Search      Hot    Newest Novel
HOME > Short Stories > The Preparation & Mounting of Microscopic Objects > CHAPTER VII.
Font Size:【Large】【Middle】【Small】 Add Bookmark  
CHAPTER VII.
 MISCELLANEOUS.  
It must be evident to all readers that there are various objects of interest to the microscopist which cannot be properly placed amongst any of the forementioned classes, but must not be omitted in such a guide as this professes to be. Of these may be mentioned the circulation of the blood in various animals, the rotary motion of the fluid in many plants, the best means of taking minute photographs, &c. &c.
Perhaps the most interesting of these objects is the circulation of the blood through the finer vessels of various parts of the animals made use of for these purposes, which parts, it is evident, must be very transparent to afford a perfect view of this phenomenon. The web of the frog’s foot is very frequently made use of, but requires a certain arrangement, which we will now describe. A piece of thin wood (Dr. Carpenter recommends cork) is taken, about eight inches long and three wide; about an inch from one end is cut a hole, half or three-quarters of an inch in diameter. The body of the frog is then placed in a wet bag, or wrapped in wet calico, whilst the hind-foot projects; the whole is then laid upon the piece of wood so that the foot, which is left free, may be extended over the hole. The web must then be spread out, and secured either by threads to small pins on the wood, or the pins must be driven through the web into the wood, and so kept in position. A few bands of tape must be passed round the body, the leg, and the wood, to prevent any disarrangement arising from the animal141 starting, &c. Care must be taken that the tape is not too tight, else the circulation will be very slow or altogether stopped. The wood must now be fixed upon the stage, with the aperture under the object-glass: this is sometimes done by simply binding it, or a spring is fixed so as to accomplish the same object without so much trouble. With a half-inch power the blood may now be seen to flow very distinctly. The frog may be used for hours if care is taken to prevent the web from becoming dry, by wetting it with a little water from time to time. The piece of wood or cork upon which the frog is laid is often made to give place to the “frog-plates,” supplied by opticians. These are made of brass, somewhat resembling the piece of wood above recommended, but each maker’s pattern differs according to his own taste.
The tongue of the frog is also sometimes used for the purpose of showing the circulation of the blood, which is done in the following manner:—The body is wrapped with the calico, and made fast to the plate as before, only the mouth of the frog is brought to the opening. The tongue is then gently drawn out of the mouth and pinned down over the aperture, when the circulation will be well shown. But, as Dr. Carpenter observes, the cruelty of this mode of treatment is so repulsive that it is unjustifiable.
Tadpoles of the frog (which, of course, are only obtainable in their season) are good subjects for showing the circulation of the blood. They are best suited for the microscope when about one inch long. The tadpoles of the newt and toad also are equally suitable. They may be placed in a very shallow glass trough with a little water, and a narrow band of linen bound lightly round in some part not required for examination, to keep them from moving; or they may be laid upon a glass plate with a drop or two of water, and a thin glass covering lightly bound upon it. Dr. Carpenter, however, places them first in cold water, gradually adding warm until the whole becomes about 100°, when the tadpole becomes rigid, whilst the circulation is still maintained. I142 have not, however, found this necessary, the thin glass accomplishing all that is desired. The tail is generally the most transparent, and shows the circulation best; but in some of the newt larv? the blood may be traced down to the very extremities if they are not too old. Mr. Whitney places the tadpole upon its back, by which means the heart and other internal arrangements may be seen.
Amongst fishes also may be found subjects for the same purpose, but they seldom furnish as good examples as those before mentioned, because the blood-vessels are not nearly so abundant, as in the foot of the frog, &c. The stickleback is, however, procurable almost in any place during the summer months, and may be laid in a shallow trough, loosely bound down as the tadpole. The tail may be covered with a piece of thin glass to prevent him curling it to the object-glass. The power needed with this will be about the same as with the other subjects—viz., half to quarter inch object-glass.
It is not absolutely necessary to go to reptiles or fishes for this curious sight, as some other animals serve very well. In the wings of the common bat may be found a good subject. These must be stretched out on something resembling the frog-plate before described, when those parts near to the bones will show the largest vessels very clearly. The ear of a young mouse is an illustration of the same phenomenon, but it is very difficult to fix it in a good position, as these animals are so very timid and restless.
Amongst insects also the same law may be observed, by placing them in the “cage,” or “live-box,” so as to keep them still, but not to injure them by too much pressure. In certain larv? this is particularly well shown, as that of the day-fly and plumed gnat; but in some of these the blood is almost colourless. In the wings also of many insects this circulation is well seen, as in those of the common housefly; but as these parts become dry in a few days, the subject should not be more than twenty-four hours old.
Somewhat approximating to the forementioned phenomenon,143 is the “rotation” of fluid in the cells, or, as it is usually termed, the circulation of the sap, of plants. This is shown in certain vegetable growths as a constant stream of thick fluid, wherein small globules are seen; which stream flows round the individual cells, or up the leaf, turning at the extremity, and down again by a different but parallel channel. There is little or no difficulty in showing this in many plants; but some are, of course, better than others, and require a different treatment; we will, therefore, notice a few of these. Perhaps the best of all is the Vallisneria spiralis, which is an aquatic plant, frequently grown in, but not really belonging to, this country. As it somewhat resembles grass, the leaf is not used in its natural state, but a thin section cut lengthwise with a razor or other sharp instrument—this section, however, is much better when the outer surface has been first removed. It should then be laid upon a slide with a drop or two of water, and covered with a piece of thin glass. Often the cutting of the section seems to be such a shock to the leaf that no motion is visible for awhile, but in a short time the warmth of an ordinary sitting-room will revive it, and with a quarter-inch object-glass the currents will be rendered beautifully distinct. Where the “stream” is unusually obstinate the warmth may be slightly increased, but too great heat destroys the movement altogether. In the summer, any of the leaves show this “circulation” very well; but in the winter, the slightly yellow ones are said to be the best.
The Vallisneria requires to be cut in sections to show this “circulation;” but there are many plants of which it is but necessary to take a fragment and lay it upon a slide. The Anacharis alsinastrum is one of these: it grows in water, having three leaves round the stem, then a bare portion, again another three leaves, and so on. One of these leaves must be plucked close to the stem, and laid upon a slide with a drop of water. Thin glass should be placed upon it, and along the mid-rib of the leaves the144 “circulation” may be seen most beautifully when a good specimen has been chosen; but it requires rather more power than the Vallisneria. This plant is very common in many parts of the country, a great number of our ponds and streams being literally choked up by it. In the Chara vulgaris and two or three of the Nitell?, &c., this phenomenon may also be seen with no preparation except plucking a part from the stem and laying it upon a slide as with the Anacharis. In using the Frog-bit, the outer part of the young leaf-buds must be taken to obtain the best specimens for this purpose; but a section of the stem will also show the “circulation,” though not so well. The plants before mentioned are all aquatic, but the same movement of the globules has been observed in several kinds of land plants, as in the hairs upon the leaf-stalks of the common groundsel; but these do not show it so well, nor are they so easily managed as the above.
Many microscopists who are not fortunate enough to be in the neighbourhood of these plants (indeed the Vallisneria is a foreign one) grow them in jars, so a few remarks as to the treatment they require will not be out of place. The Vallisneria requires a temperature not lower than 55° or 60°, and even a higher degree than this renders its growth quicker; and no great change must take place: the more equable the temperature the more healthy will the plant be. A glass jar should be taken, having an inch or two of mould at the bottom, which must be pressed down closely, and the plant must be set in this. Water must then be gently poured in, so as not to disturb the mould. As this plant flourishes best when the water is frequently changed, Mr. Quekett recommends that the jar should be occasionally placed under a tap of water, and a very gentle stream allowed to fall into it for several hours, by which means much of the confervoid growth will be got rid of and the plant invigorated. The Anacharis may be rooted in the earth like the Vallisneria, but a small detached piece may be thrown into the jar of water and there left until wanted.145 For months the “circulation” will be well shown by it, and it will probably grow and increase. It is also very healthy in an in-door aquarium. It is recommended that the jars in which any of the Chara are grown should be moved about as little as possible, as the long roots are very tender, and will not bear agitation.
An object which is interesting to the microscopist, as well as the unscientific observer, is the growth of seeds, as it is often erroneously termed. A shaving of the outside of the seed is taken and laid upon the glass slide; a thin glass cover is then placed upon it, and a drop of water applied to the edge of this. The water will then gradually flow under the glass and reach the section of the seed, when the transparent fibres will appear to spring out and “grow” for some minutes. This, however, is produced by the unfolding of a spiral formation in the cells, and, therefore, has really no similarity to the true growth. The seeds of the Salvias, Collomias, Senecio, Ruellia, &c., are well suited for the display of this curious sight.
To watch the development of the spores of ferns, and the fertilization and products, Dr. Carpenter recommends the following mode of proceeding:—“Let a frond of a fern, whose fructification is mature, be laid upon a piece of fine paper, with its spore-bearing surface downwards; in the course of a day or two this paper will be found to be covered with a very fine brownish dust, which consists of the discharged spores. This must be carefully collected, and should be spread upon the surface of a smoothed ............
Join or Log In! You need to log in to continue reading
   
 

Login into Your Account

Email: 
Password: 
  Remember me on this computer.

All The Data From The Network AND User Upload, If Infringement, Please Contact Us To Delete! Contact Us
About Us | Terms of Use | Privacy Policy | Tag List | Recent Search  
©2010-2018 wenovel.com, All Rights Reserved