Search      Hot    Newest Novel
HOME > Short Stories > The Preparation & Mounting of Microscopic Objects > CHAPTER VI.
Font Size:【Large】【Middle】【Small】 Add Bookmark  
CHAPTER VI.
 INJECTION.  
1. Injection is the filling of the arteries, veins, or other vessels of animals with some coloured substance, in order that their natural arrangement may be made visible. This is, of course, a delicate operation, and needs special apparatus, which I will now attempt to describe.
2. Syringe.—This is usually made to contain about two ounces. On each side of the part next to the handle is a ring, so that the finger may be thrust through it, and the thumb may work the piston as in an ordinary syringe. The plug of the piston must be “packed” with wash-leather, and fit so closely as to be perfectly air-tight; and if, when it has been used awhile, it is found that some of the liquid escapes past the plug into the back part of the body, it must be repacked, which operation will be best understood by examining the part. These syringes are made of various sizes, but in ordinary operations the above will be all that is needed. The nozzle is about an inch long, and polished so accurately that there is no escape when the pipes are tightly placed upon it dry.
3. The pipes are usually about an inch long, to the end of which are affixed thicker tubes so as to fit the nozzle, as before mentioned, whilst a short arm projects from each side of these, so that the silk or thread which is used to tie this artery, &c., upon the thin pipe may be carried round these arms, and all danger of slipping off prevented. The pipes are made of different sizes, from that which will admit only a very fine needle (and this will need now and then to be cleaned, or to be freed from any chance obstruction),123 to that which will take a large pin. These sizes must always be at hand, as the vessels of some subjects are exceedingly minute.
4. Stopcock.—This is a short pipe like a small straight tap, which fits accurately upon the end of the syringe like the pipes, and also takes the pipes in the same manner. The use of this is absolutely necessary when the object is so large that one syringe full of liquid will not fill it. If no preventive were used, some part of the liquid would return whilst the syringe was being replenished, but the stopcock is then turned as in an ordinary tap, and all danger of this effectually removed.
5. Curved needles.—These are easily made by heating common needles at the end where the eye is situated, and bending them with a small pair of “pliers” into a segment of a circle half an inch in diameter. They are, perhaps, more convenient when the bent part is thrown slightly back where it commences. The pointed end is then thrust into a common penholder, and the needle needs no re-tempering, as the work for which it is wanted is simply to convey the thread or silk under any artery or vessel where it would be impossible to reach with the unassisted fingers.
6. A kind of forceps, commonly know by the name of “bullnose forceps,” will be constantly required during the process of injecting. These are short, usually very strong, but not heavy, and close very tightly by their own spring, which may be easily overcome and so released by the pressure of the fingers. When any vessel has not been tied by the operator, and he finds the injected fluid escaping, one of these “bulldogs” may be taken up and closed upon the opening. This will cause very little interruption, and the stoppage will be almost as effectual as if it were tied.
7. When the ordinary mode of injection is employed, it is necessary that the preparations be kept warm during the time they are used, otherwise the gelatine or size which they contain becomes stiff, and will not allow of being124 worked by the syringe. For this purpose we must procure small earthenware or tin pots of the size required, which will differ according to the kind of work to be done; and to each of these a loose lid should be adapted to protect it from dust, &c. These pots must be allowed to stand in a tin bath of water, under which a lamp or gas flame may be placed to keep the temperature sufficiently high to insure the perfect fluidity of the mixture. The tin bath is, perhaps, most convenient when made like a small shallow cistern; but some close it on the top to place the pots upon it, and alter the shape to their own convenience.
8. We will now inquire into some of the materials which are needed in this operation; the first of which is size. This substance is often used in the form of glue, but it must be of the very best and most transparent kind. To make the liquid which is to receive the colours for the usual mode of injecting, take of this glue seven ounces, and pour upon it one quart of clean water; allow this to stand a few hours, and then boil gently until it is thoroughly dissolved, stirring with a wooden or glass rod during the process. Take all impurities from the surface, and strain through flannel or other fine medium. The weather affects this a little as to its stiffness when cold, but this must be counteracted by adding a little more glue if found too liquid.
9. Instead of glue, gelatine is generally used, especially when the work to be accomplished is of the finer kind. The proportions are very different in this case, one ounce of gelatine to about fourteen ounces of water being sufficient. This, like glue, must be soaked a few hours in a small part of the cold water, the remainder being boiled and added, when it must be stirred until dissolved. A good size may be made by boiling clean strips of parchment for awhile, and then straining the liquid whilst hot through flannel; but when the injections are to be transparent, it is of the greatest importance that125 the size be as colourless as possible. For this purpose good gelatine must be employed, as Nelson’s or Cox’s: some persons of experience prefer the latter.
10. Colours.—The size-solution above mentioned will need some colouring matter to render it visible when injected into the vessels of any animal, and different colours are used when two or more kinds of vessels are so treated, in order that each “set” may be easily distinguished by sight. The proportion in which these colours are added to the size-solution may be given as follows:—
11. For—
Red 8 parts of size-solution (by weight) to 1 part of vermilion.
Yellow 6 ” ” 1 chrome yellow.
White 5 ” ” 1 flake-white.
Blue 3 ” ” 1 blue-smalt, fine.
Black 12 ” ” 1 lamp-black.
Whichever of these colours is made use of must be levigated in a mortar with the addition of a very small quantity of water until every lump of colour or foreign matter is reduced to the finest state possible, otherwise in the process of injecting it will most likely be found that some of the small channels have been closed and the progress of the liquid stopped. When this fineness of particles is attained, warmth sufficient to render the size quite fluid must be used, and the colour added gradually, stirring all the time with a rod. It may be here mentioned that where one colour only is required, vermilion is, perhaps, the best; and blue is seldom used for opaque objects, as it reflects very little more light than black.
12. When it is wished to fill the capillaries (the minute vessels connecting the arteries with the veins), the “Micrographic Dictionary” recommends the colouring matter to be made by double decomposition. As a professed handbook would be, perhaps, deemed incomplete without some directions126 as to the mode of getting these colours, I will here make use of those given in that work. For red, however, vermilion, as above stated, may be used; but it must be carefully examined by reflected light to see whether it be free from all colourless crystals or not. It must first be worked in a mortar, and then the whole thrown into a quantity of water and stirred about; after leaving it not longer than a quarter of a minute, the larger portions will settle to the bottom, and the liquid being poured off will contain the finer powder. This may then be dried slowly, or added to the size whilst wet in the manner before advised.
13. Yellow injection.—To prepare this, take—
Acetate (sugar) of lead 380 grains.
Bichromate of potash 152 ”
Size    8 ounces.
Dissolve the lead salt in the warm size, then add the bichromate of potash finely powdered.
Some of the chromic acid remains free, and is wasted in this solution, so the following is given:—
Acetate of lead 190 grains.
Chromate of potash (neutral) 100 ”
Size    4 ounces.
The first of these has the deepest colour, and is the most generally used.
14. White injection.—This is a carbonate of lead:—
Acetate of lead 190 grains.
Carbonate of potash  83 ”
Size    4 ounces.
Dissolve the acetate of lead in the warm size, and filter through flannel; dissolve the carbonate of potash in the smallest quantity of water, and add to the size: 143 grains of carbonate of soda may be substituted for the carbonate of potash.
127 15. For blue injection, which is not, however, much used with reflected light, as before stated, take—
Prussian blue 73 grains.
Oxalic acid 73 ”
Size  4 ounces.
The oxalic acid is first finely powdered in a mortar, the Prussian blue and a little water added, and the whole then thoroughly mixed with the size.
16. It may here be repeated, that it is only when the capillaries are to be filled that there is any need to be at the trouble to prepare the colours by this double decomposition; and, indeed, colours ground so finely may be procured that the above instructions would have been omitted, had it not been supposed that some students might find a double pleasure in performing as much of the work as possible by their own unaided labours.
17. The process of injection may now be considered; but it is impossible for written instructions to supply the place of experience. I will do my best, however, to set the novice at least in the right way. There are two kinds of injection—one where the object and colours are opaque, and consequently fit for examination by reflected light only; the other, where the vessels are filled with transparent colours, and must be viewed by transmitted light. The first of these is most frequently employed, so we will begin with it. In the object which is to be injected a vessel of the kind which we wish to be filled must be found; an opening must then be made in it to allow one of the small pipes before mentioned to be thrust some distance within it. When this is accomplished, thread the curved needle with a piece of silk thread, or very fine string, which some operators rub well with beeswax. This thread must not be too thin, else there is danger of cutting the vessel. The cord is then carried under the inserted pipe, and the vessel bound tightly upon it, the ends being brought up round the transverse arms, and there tied; so that all danger of accidentally withdrawing128 the pipe is obviated. Care must now be used in closing all the vessels which communicate with that where the pipe is placed lest the injecting fluid escape; and this must be done by tieing them with silk. Should, however, any of these be left open by accident, the bullnose forceps must be made use of, as before recommended.
18. The part to be injected must now be immersed in warm water, not, however, above 100° Fahrenheit, and be left until the whole is thoroughly warmed. Whilst this is being done, the coloured size must be made ready by the pot being placed in the tin bath of warm water, which must be of sufficient temperature (about 110° Fahrenheit) to keep it perfectly liquid. For the same purpose, the syringe is often tightly covered with two or three folds of flannel; and, indeed, there is no part of the process which requires more attention. If the substance to be injected is too hot, it is injured; whilst, if any of the articles are too cold, the gelatine, or size, loses a part of its fluidity, and consequently cannot enter the minute parts. When all is prepared, the syringe, with the stopcock attached, should be warmed, and then filled and emptied with the injecting fluid two or three times, care being taken that the end of the syringe be kept beneath any bubbles which form upon the surface. The syringe may then be filled, and closely attached to the pipe which is tied in the vessel. With a firm and steady pressure the piston must be forced downwards, when the substance will be perceived to swell, and the colour show itself in places where the covering is thin. When the syringe is almost emptied of its contents, the stopcock must be turned to prevent any escape of the injection from the subject. It must then be refilled, as in the first instance, and the process repeated. I say almost emptied, because it is well not to force the piston of the syringe quite to the bottom, lest the small quantity of air which frequently remains be driven into some of the vessels, and the object be injured or quite ruined. As the injection is proceeded with, it will be found that the force required grows greater, yet care must be taken not to use129 too much, or the vessels will burst, and render all the labour fruitless. The movement of the piston must be occasionally so slow as to be almost imperceptible, and for this reason it is sometimes marked with lines about one-eighth of an inch apart.
19. Of course, during the whole process the injecting fluid and subject must be kept at a temperature high enough to allow the liquid to flow freely; and the escape of a little of it need cause no fears to the student, as it is almost impossible to fill any subject without some loss. When the injected object has received sufficient fluid, it should have a plump appearance, owing to all the vessels being well filled. The vessel must then be tied up where the pipe was inserted, and the whole left in cold water two or three hours, after which time it may be mounted; but it may be well to notice a few things which the beginner ought to know before entering into that part of the process; and he may be here informed that it is not necessary to mount the objects immediately, otherwise it would be impossible for one person to make use of half of any large subject, as it would be in a state of decay long before each part could have been examined and separated. Large pieces should be therefore immersed in equal parts of spirits of wine and water, or glycerine, which some think better still, and thus preserved in bottles until time can be given to a closer examination.
20. In operating upon large subjects, entire animals, &c., the constant pressure required by the piston of the syringe grows wearisome, besides occupying both hands, which is sometimes inconvenient when working without assistance. To obviate this, another way of driving the syringe was published in the “Micrographic Dictionary” which I will quote here:—“We have therefore contrived a very simple piece of apparatus, which any one can prepare for himself, and which effects the object by mechanical means. It consists of a rectangular piece of board, two feet long and ten inches wide, to one end of which is fastened an130 inclined piece of wood (equal in width to the long board, and one foot high). The inclined portion is pierced with three holes, one above the other, into either of which the syringe may be placed—the uppermost being used for the larger, the lowermost for the smaller syringe; and these holes are of such size as freely to admit the syringe covered with flannel, but not to allow the rings to pass through them. The lower part of the syringe is supported upon a semiannular piece of wood, fastened to the upper end of an upright rod, which slides in a hollow cylinder fixed at its base to a small rectangular piece of wood; and by means of a horizontal wooden screw, the rod may be made to support the syringe at any height required. The handle of the syringe is let into a groove in a stout wooden rod connected by means of two catgut strings with a smaller rod, to the middle of which is fastened a string playing over a pulley, and at the end of which is a hook for supporting weights, the catgut strings passing through a longitudinal slit in the inclined piece of wood.” When in use the syringe is filled with injecting fluid, and passed through one of the three holes which is most suitable. The object being placed so that the pipe and syringe can be best joined, the rod and strings are set in order, and a weight placed on the hook. The stopcock must then be opened gradually, when the operator will be able to judge whether the weight is a proper one or not: if the piston is driven with any speed, there is dang............
Join or Log In! You need to log in to continue reading
   
 

Login into Your Account

Email: 
Password: 
  Remember me on this computer.

All The Data From The Network AND User Upload, If Infringement, Please Contact Us To Delete! Contact Us
About Us | Terms of Use | Privacy Policy | Tag List | Recent Search  
©2010-2018 wenovel.com, All Rights Reserved