Miscellaneous Optical Researches of Newton—His Experiments on Refraction—His Conjecture respecting the Inflammability of the Diamond—His Law of Double Refraction—His Observations on the Polarization of Light—Newton’s Theory of Light—His “Optics.”
Before concluding our account of Newton’s optical discoveries, it is necessary to notice some of his minor researches, which, though of inferior importance in the science of light, have either exercised an influence over the progress of discovery, or been associated with the history of other branches of knowledge.
One of the most curious of these inquiries related to the connexion between the refractive powers and the chymical composition of bodies. Having measured the refractive powers and the densities of twenty-two substances, he found that the forces which reflect and refract light are very nearly proportional to the densities of the same bodies. In this law, however, he noticed a remarkable exception in the case of unctuous and sulphureous bodies, such as camphire, olive oil, linseed oil, spirit of turpentine,107 and diamond, which have their refractive powers two or three times greater in respect of their densities than the other substances in the table, while among themselves their refractive powers are proportional to their densities, without any considerable variation. Hence he concluded that diamond “is an unctuous substance coagulated,”—a sagacious prediction, which has been verified in the discoveries of modern chymistry. The connexion between a high degree of inflammability and a great refracting force has been still more strongly established by the high refractive power which I detected in phosphorus, and which was discovered in hydrogen by MM. Biot and Arago.
There is no part of the optical labours of Newton which is less satisfactory than that which relates to the double refraction of light. In 1690, Huygens, published his admirable treatise on light, in which he has given the law of double refraction in calcareous spar, as deduced from his theory of light, and as confirmed by direct experiment. Viewing it probably as a theoretical deduction, Newton seems to have regarded it as incorrect, and though he has given Huygens the credit of describing the phenomena more exactly than Bartholinus, yet, without assigning any reason, he rejected the law of the Dutch philosopher, and substituted another in its place. These observations of our author form the subject of the twenty-fifth and twenty-sixth queries at the end of his Optics, which was published fourteen years after the appearance of Huygens’s work. The law adopted by Newton is not accompanied with any of the experiments from which it was deduced; and though he has given it without expressing any doubt of its accuracy, it is, nevertheless, entirely incompatible with observation, and has been rejected by all succeeding philosophers.
In his speculations respecting the successive disappearance and reappearance of two of the four108 images which are formed when a luminous object is viewed through ............