Search      Hot    Newest Novel
HOME > Classical Novels > On the Origin of Species > Chapter 13 Mutual Affinities Of Organic Begins: Morphology: E
Font Size:【Large】【Middle】【Small】 Add Bookmark  
Chapter 13 Mutual Affinities Of Organic Begins: Morphology: E

CLASSIFICATION, groups subordinate to groups. Natural system. Rules and difficulties in classification, explained on the theory of descent with modification. Classification of varieties. Descent always used in classification. Analogical or adaptive characters. Affinities, general, complex and radiating. Extinction separates and defines groups. MORPHOLOGY, between members of the same class, between parts of the same individual. EMBRYOLOGY, laws of, explained by variations not supervening at an early age, and being inherited at a corresponding age. RUDIMENTARY ORGANS; their origin explained. Summary.

From the first dawn of life, all organic beings are found to resemble each other in descending degrees, so that they can be classed in groups under groups. This classification is evidently not arbitrary like the grouping of the stars in constellations. The existence of groups would have been of simple signification, if one group had been exclusively fitted to inhabit the land, and another the water; one to feed on flesh, another on vegetable matter, and so on; but the case is widely different in nature; for it is notorious how commonly members of even the same subgroup have different habits. In our second and fourth chapters, on Variation and on Natural Selection, I have attempted to show that it is the widely ranging, the much diffused and common, that is the dominant species belonging to the larger genera, which vary most. The varieties, or incipient species, thus produced ultimately become converted, as I believe, into new and distinct species; and these, on the principle of inheritance, tend to produce other new and dominant species. Consequently the groups which are now large, and which generally include many dominant species, tend to go on increasing indefinitely in size. I further attempted to show that from the varying descendants of each species trying to occupy as many and as different places as possible in the economy of nature, there is a constant tendency in their characters to diverge. This conclusion was supported by looking at the great diversity of the forms of life which, in any small area, come into the closest competition, and by looking to certain facts in naturalisation.

I attempted also to show that there is a constant tendency in the forms which are increasing in number and diverging in character, to supplant and exterminate the less divergent, the less improved, and preceding forms. I request the reader to turn to the diagram illustrating the action, as formerly explained, of these several principles; and he will see that the inevitable result is that the modified descendants proceeding from one progenitor become broken up into groups subordinate to groups. In the diagram each letter on the uppermost line may represent a genus including several species; and all the genera on this line form together one class, for all have descended from one ancient but unseen parent, and, consequently, have inherited something in common. But the three genera on the left hand have, on this same principle, much in common, and form a sub-family, distinct from that including the next two genera on the right hand, which diverged from a common parent at the fifth stage of descent. These five genera have also much, though less, in common; and they form a family distinct from that including the three genera still further to the right hand, which diverged at a still earlier period. And all these genera, descended from (A), form an order distinct from the genera descended from (I). So that we here have many species descended from a single progenitor grouped into genera; and the genera are included in, or subordinate to, sub-families, families, and orders, all united into one class. Thus, the grand fact in natural history of the subordination of group under group, which, from its familiarity, does not always sufficiently strike us, is in my judgment fully explained.

Naturalists try to arrange the species, genera, and families in each class, on what is called the Natural System. But what is meant by this system? Some authors look at it merely as a scheme for arranging together those living objects which are most alike, and for separating those which are most unlike; or as an artificial means for enunciating, as briefly as possible, general propositions,--that is, by one sentence to give the characters common, for instance, to all mammals, by another those common to all carnivora, by another those common to the dog-genus, and then by adding a single sentence, a full description is given of each kind of dog. The ingenuity and utility of this system are indisputable. But many naturalists think that something more is meant by the Natural System; they believe that it reveals the plan of the Creator; but unless it be specified whether order in time or space, or what else is meant by the plan of the Creator, it seems to me that nothing is thus added to our knowledge. Such expressions as that famous one of Linnaeus, and which we often meet with in a more or less concealed form, that the characters do not make the genus, but that the genus gives the characters, seem to imply that something more is included in our classification, than mere resemblance. I believe that something more is included; and that propinquity of descent,--the only known cause of the similarity of organic beings,--is the bond, hidden as it is by various degrees of modification, which is partially revealed to us by our classifications.

Let us now consider the rules followed in classification, and the difficulties which are encountered on the view that classification either gives some unknown plan of creation, or is simply a scheme for enunciating general propositions and of placing together the forms most like each other. It might have been thought (and was in ancient times thought) that those parts of the structure which determined the habits of life, and the general place of each being in the economy of nature, would be of very high importance in classification. Nothing can be more false. No one regards the external similarity of a mouse to a shrew, of a dugong to a whale, of a whale to a fish, as of any importance. These resemblances, though so intimately connected with the whole life of the being, are ranked as merely "adaptive or analogical characters;" but to the consideration of these resemblances we shall have to recur. It may even be given as a general rule, that the less any part of the organisation is concerned with special habits, the more important it becomes for classification. As an instance: Owen, in speaking of the dugong, says, "The generative organs being those which are most remotely related to the habits and food of an animal, I have always regarded as affording very clear indications of its true affinities. We are least likely in the modifications of these organs to mistake a merely adaptive for an essential character." So with plants, how remarkable it is that the organs of vegetation, on which their whole life depends, are of little signification, excepting in the first main divisions; whereas the organs of reproduction, with their product the seed, are of paramount importance!

We must not, therefore, in classifying, trust to resemblances in parts of the organisation, however important they may be for the welfare of the being in relation to the outer world. Perhaps from this cause it has partly arisen, that almost all naturalists lay the greatest stress on resemblances in organs of high vital or physiological importance. No doubt this view of the classificatory importance of organs which are important is generally, but by no means always, true. But their importance for classification, I believe, depends on their greater constancy throughout large groups of species; and this constancy depends on such organs having generally been subjected to less change in the adaptation of the species to their conditions of life. That the mere physiological importance of an organ does not determine its classificatory value, is almost shown by the one fact, that in allied groups, in which the same organ, as we have every reason to suppose, has nearly the same physiological value, its classificatory value is widely different. No naturalist can have worked at any group without being struck with this fact; and it has been most fully acknowledged in the writings of almost every author. It will suffice to quote the highest authority, Robert Brown, who in speaking of certain organs in the Proteaceae, says their generic importance, "like that of all their parts, not only in this but, as I apprehend, in every natural family, is very unequal, and in some cases seems to be entirely lost." Again in another work he says, the genera of the Connaraceae "differ in having one or more ovaria, in the existence or absence of albumen, in the imbricate or valvular aestivation. Any one of these characters singly is frequently of more than generic importance, though here even when all taken together they appear insufficient to separate Cnestis from Connarus." To give an example amongst insects, in one great division of the Hymenoptera, the antennae, as Westwood has remarked, are most constant in structure; in another division they differ much, and the differences are of quite subordinate value in classification; yet no one probably will say that the antennae in these two divisions of the same order are of unequal physiological importance. Any number of instances could be given of the varying importance for classification of the same important organ within the same group of beings.

Again, no one will say that rudimentary or atrophied organs are of high physiological or vital importance; yet, undoubtedly, organs in this condition are often of high value in classification. No one will dispute that the rudimentary teeth in the upper jaws of young ruminants, and certain rudimentary bones of the leg, are highly serviceable in exhibiting the close affinity between Ruminants and Pachyderms. Robert Brown has strongly insisted on the fact that the rudimentary florets are of the highest importance in the classification of the Grasses.

Numerous instances could be given of characters derived from parts which must be considered of very trifling physiological importance, but which are universally admitted as highly serviceable in the definition of whole groups. For instance, whether or not there is an open passage from the nostrils to the mouth, the only character, according to Owen, which absolutely distinguishes fishes and reptiles--the inflection of the angle of the jaws in Marsupials--the manner in which the wings of insects are folded--mere colour in certain Algae--mere pubescence on parts of the flower in grasses--the nature of the dermal covering, as hair or feathers, in the Vertebrata. If the Ornithorhynchus had been covered with feathers instead of hair, this external and trifling character would, I think, have been considered by naturalists as important an aid in determining the degree of affinity of this strange creature to birds and reptiles, as an approach in structure in any one internal and important organ.

The importance, for classification, of trifling characters, mainly depends on their being correlated with several other characters of more or less importance. The value indeed of an aggregate of characters is very evident in natural history. Hence, as has often been remarked, a species may depart from its allies in several characters, both of high physiological importance and of almost universal prevalence, and yet leave us in no doubt where it should be ranked. Hence, also, it has been found, that a classification founded on any single character, however important that may be, has always failed; for no part of the organisation is universally constant. The importance of an aggregate of characters, even when none are important, alone explains, I think, that saying of Linnaeus, that the characters do not give the genus, but the genus gives the characters; for this saying seems founded on an appreciation of many trifling points of resemblance, too slight to be defined. Certain plants, belonging to the Malpighiaceae, bear perfect and degraded flowers; in the latter, as A. de Jussieu has remarked, "the greater number of the characters proper to the species, to the genus, to the family, to the class, disappear, and thus laugh at our classification." But when Aspicarpa produced in France, during several years, only degraded flowers, departing so wonderfully in a number of the most important points of structure from the proper type of the order, yet M. Richard sagaciously saw, as Jussieu observes, that this genus should still be retained amongst the Malpighiaceae. This case seems to me well to illustrate the spirit with which our classifications are sometimes necessarily founded.

Practically when naturalists are at work, they do not trouble themselves about the physiological value of the characters which they use in defining a group, or in allocating any particular species. If they find a character nearly uniform, and common to a great number of forms, and not common to others, they use it as one of high value; if common to some lesser number, they use it as of subordinate value. This principle has been broadly confessed by some naturalists to be the true one; and by none more clearly than by that excellent botanist, Aug. St. Hilaire. If certain characters are always found correlated with others, though no apparent bond of connexion can be discovered between them, especial value is set on them. As in most groups of animals, important organs, such as those for propelling the blood, or for aerating it, or those for propagating the race, are found nearly uniform, they are considered as highly serviceable in classification; but in some groups of animals all these, the most important vital organs, are found to offer characters of quite subordinate value.

We can see why characters derived from the embryo should be of equal importance with those derived from the adult, for our classifications of course include all ages of each species. But it is by no means obvious, on the ordinary view, why the structure of the embryo should be more important for this purpose than that of the adult, which alone plays its full part in the economy of nature. Yet it has been strongly urged by those great naturalists, Milne Edwards and Agassiz, that embryonic characters are the most important of any in the classification of animals; and this doctrine has very generally been admitted as true. The same fact holds good with flowering plants, of which the two main divisions have been founded on characters derived from the embryo,--on the number and position of the embryonic leaves or cotyledons, and on the mode of development of the plumule and radicle. In our discussion on embryology, we shall see why such characters are so valuable, on the view of classification tacitly including the idea of descent.

Our classifications are often plainly influenced by chains of affinities. Nothing can be easier than to define a number of characters common to all birds; but in the case of crustaceans, such definition has hitherto been found impossible. There are crustaceans at the opposite ends of the series, which have hardly a character in common; yet the species at both ends, from being plainly allied to others, and these to others, and so onwards, can be recognised as unequivocally belonging to this, and to no other class of the Articulata.

Geographical distribution has often been used, though perhaps not quite logically, in classification, more especially in very large groups of closely allied forms. Temminck insists on the utility or even necessity of this practice in certain groups of birds; and it has been followed by several entomologists and botanists.

Finally, with respect to the comparative value of the various groups of species, such as orders, sub-orders, families, sub-families, and genera, they seem to be, at least at present, almost arbitrary. Several of the best botanists, such as Mr. Bentham and others, have strongly insisted on their arbitrary value. Instances could be given amongst plants and insects, of a group of forms, first ranked by practised naturalists as only a genus, and then raised to the rank of a sub-family or family; and this has been done, not because further research has detected important structural differences, at first overlooked, but because numerous allied species, with slightly different grades of difference, have been subsequently discovered.

All the foregoing rules and aids and difficulties in classification are explained, if I do not greatly deceive myself, on the view that the natural system is founded on descent with modification; that the characters which naturalists consider as showing true affinity between any two or more species, are those which have been inherited from a common parent, and, in so far, all true classification is genealogical; that community of descent is the hidden bond which naturalists have been unconsciously seeking, and not some unknown plan of creation, or the enunciation of general propositions, and the mere putting together and separating objects more or less alike.

But I must explain my meaning more fully. I believe that the ARRANGEMENT of the groups within each class, in due subordination and relation to the other groups, must be strictly genealogical in order to be natural; but that the AMOUNT of difference in the several branches or groups, though allied in the same degree in blood to their common progenitor, may differ greatly, being due to the different degrees of modification which they have undergone; and this is expressed by the forms being ranked under different genera, families, sections, or orders. The reader will best understand what is meant, if he will take the trouble of referring to the diagram in the fourth chapter. We will suppose the letters A to L to represent allied genera, which lived during the Silurian epoch, and these have descended from a species which existed at an unknown anterior period. Species of three of these genera (A, F, and I) have transmitted modified descendants to the present day, represented by the fifteen genera (a14 to z14) on the uppermost horizontal line. Now all these modified descendants from a single species, are represented as related in blood or descent to the same degree; they may metaphorically be called cousins to the same millionth degree; yet they differ widely and in different degrees from each other. The forms descended from A, now broken up into two or three families, constitute a distinct order from those descended from I, also broken up into two families. Nor can the existing species, descended from A, be ranked in the same genus with the parent A; or those from I, with the parent I. But the existing genus F14 may be supposed to have been but slightly modified; and it will then rank with the parent-genus F; just as some few still living organic beings belong to Silurian genera. So that the amount or value of the differences between organic beings all related to each other in the same degree in blood, has come to be widely different. Nevertheless their genealogical ARRANGEMENT remains strictly true, not only at the present time, but at each successive period of descent. All the modified descendants from A will have inherited something in common from their common parent, as will all the descendants from I; so will it be with each subordinate branch of descendants, at each successive period. If, however, we choose to suppose that any of the descendants of A or of I have been so much modified as to have more or less completely lost traces of their parentage, in this case, their places in a natural classification will have been more or less completely lost,--as sometimes seems to have occurred with existing organisms. All the descendants of the genus F, along its whole line of descent, are supposed to have been but little modified, and they yet form a single genus. But this genus, though much isolated, will still occupy its proper intermediate position; for F originally was intermediate in character between A and I, and the several genera descended from these two genera will have inherited to a certain extent their characters. This natural arrangement is shown, as far as is possible on paper, in the diagram, but in much too simple a manner. If a branching diagram had not been used, and only the names of the groups had been written in a linear series, it would have been still less possible to have given a natural arrangement; and it is notoriously not possible to represent in a series, on a flat surface, the affinities which we discover in nature amongst the beings of the same group. Thus, on the view which I hold, the natural system is genealogical in its arrangement, like a pedigree; but the degrees of modification which the different groups have undergone, have to be expressed by ranking them under different so-called genera, sub-families, families, sections, orders, and classes.

It may be worth while to illustrate this view of classification, by taking the case of languages. If we possessed a perfect pedigree of mankind, a genealogical arrangement of the races of man would afford the best classification of the various languages now spoken throughout the world; and if all extinct languages, and all intermediate and slowly changing dialects, had to be included, such an arrangement would, I think, be the only possible one. Yet it might be that some very ancient language had altered little, and had given rise to few new languages, whilst others (owing to the spreading and subsequent isolation and states of civilisation of the several races, descended from a common race) had altered much, and had given rise to many new languages and dialects. The various degrees of difference in the languages from the same stock, would have to be expressed by groups subordinate to groups; but the proper or even only possible arrangement would still be genealogical; and this would be strictly natural, as it would connect together all languages, extinct and modern, by the closest affinities, and would give the filiation and origin of each tongue.

In confirmation of this view, let us glance at the classification of varieties, which are believed or known to have descended from one species. These are grouped under species, with sub-varieties under varieties; and with our domestic productions, several other grades of difference are requisite, as we have seen with pigeons. The origin of the existence of groups subordinate to groups, is the same with varieties as with species, namely, closeness of descent with various degrees of modification. Nearly the same rules are followed in classifying varieties, as with species. Authors have insisted on the necessity of classing varieties on a natural instead of an artificial system; we are cautioned, for instance, not to class two varieties of the pine-apple together, merely because their fruit, though the most important part, happens to be nearly identical; no one puts the swedish and common turnips together, though the esculent and thickened stems are so similar. Whatever part is found to be most constant, is used in classing varieties: thus the great agriculturist Marshall says the horns are very useful for this purpose with cattle, because they are less variable than the shape or colour of the body, etc.; whereas with sheep the horns are much less serviceable, because less constant. In classing varieties, I apprehend if we had a real pedigree, a genealogical classification would be universally preferred; and it has been attempted by some authors. For we might feel sure, whether there had been more or less modification, the principle of inheritance would keep the forms together which were allied in the greatest number of points. In tumbler pigeons, though some sub-varieties differ from the others in the important character of having a longer beak, yet all are kept together from having the common habit of tumbling; but the short-faced breed has nearly or quite lost this habit; nevertheless, without any reasoning or thinking on the subject, these tumblers are kept in the same group, because allied in blood and alike in some other respects. If it could be proved that the Hottentot had descended from the Negro, I think he would be classed under the Negro group, however much he might differ in colour and other important characters from negroes.

With species in a state of nature, every naturalist has in fact brought descent into his classification; for he includes in his lowest grade, or that of a species, the two sexes; and how enormously these sometimes differ in the most important characters, is known to every naturalist: scarcely a single fact can be predicated in common of the males and hermaphrodites of certain cirripedes, when adult, and yet no one dreams of separating them. The naturalist includes as one species the several larval stages of the same individual, however much they may differ from each other and from the adult; as he likewise includes the so-called alternate generations of Steenstrup, which can only in a technical sense be considered as the same individual. He includes monsters; he includes varieties, not solely because they closely resemble the parent-form, but because they are descended from it. He who believes that the cowslip is descended from the primrose, or conversely, ranks them together as a single species, and gives a single definition. As soon as three Orchidean forms (Monochanthus, Myanthus, and Catasetum), which had previously been ranked as three distinct genera, were known to be sometimes produced on the same spike, they were immediately included as a single species. But it may be asked, what ought we to do, if it could be proved that one species of kangaroo had been produced, by a long course of modification, from a bear? Ought we to rank this one species with bears, and what should we do with the other species? The supposition is of course preposterous; and I might answer by the argumentum ad hominem, and ask what should be done if a perfect kangaroo were seen to come out of the womb of a bear? According to all analogy, it would be ranked with bears; but then assuredly all the other species of the kangaroo family would have to be classed under the bear genus. The whole case is preposterous; for where there has been close descent in common, there will certainly be close resemblance or affinity.

As descent has universally been used in classing together the individuals of the same species, though the males and females and larvae are sometimes extremely different; and as it has been used in classing varieties which have undergone a certain, and sometimes a considerable amount of modification, may not this same element of descent have been unconsciously used in grouping species under genera, and genera under higher groups, though in these cases the modification has been greater in degree, and has taken a longer time to complete? I believe it has thus been unconsciously used; and only thus can I understand the several rules and guides which have been followed by our best systematists. We have no written pedigrees; we have to make out community of descent by resemblances of any kind. Therefore we choose those characters which, as far as we can judge, are the least likely to have been modified in relation to the conditions of life to which each species has been recently exposed. Rudimentary structures on this view are as good as, or even sometimes better than, other parts of the organisation. We care not how trifling a character may be--let it be the mere inflection of the angle of the jaw, the manner in which an insect's wing is folded, whether the skin be covered by hair or feathers--if it prevail throughout many and different species, especially those having very different habits of life, it assumes high value; for we can account for its presence in so many forms with such different habits, only by its inheritance from a common parent. We may err in this respect in regard to single points of structure, but when several characters, let them be ever so trifling, occur together throughout a large group of beings having different habits, we may feel almost sure, on the theory of descent, that these characters have been inherited from a common ancestor. And we know that such correlated or aggregated characters have especial value in classification.

We can understand why a species or a group of species may depart, in several of its most important characteristics, from its allies, and yet be safely classed with them. This may be safely done, and is often done, as long as a sufficient number of characters, let them be ever so unimportant, betrays the hidden bond of community of descent. Let two forms have not a single character in common, yet if these extreme forms are connected together by a chain of intermediate groups, we may at once infer their community of descent, and we put them all into the same class. As we find organs of high physiological importance--those which serve to preserve life under the most diverse conditions of existence--are generally the most constant, we attach especial value to them; but if these same organs, in another group or section of a group, are found to differ much, we at once value them less in our classification. We shall hereafter, I think, clearly see why embryological characters are of such high classificatory importance. Geographical distribution may sometimes be brought usefully into play in classing large and widely-distributed genera, because all the species of the same genus, inhabiting any distinct and isolated region, have in all probability descended from the same parents.

We can understand, on these views, the very important distinction between real affinities and analogical or adaptive resemblances. Lamarck first called attention to this distinction, and he has been ably followed by Macleay and others. The resemblance, in the shape of the body and in the fin-like anterior limbs, between the dugong, which is a pachydermatous animal, and the whale, and between both these mammals and fishes, is analogical. Amongst insects there are innumerable instances: thus Linnaeus, misled by external appearances, actually classed an homopterous insect as a moth. We see something of the same kind even in our domestic varieties, as in the thickened stems of the common and swedish turnip. The resemblance of the greyhound and racehorse is hardly more fanciful than the analogies which have been drawn by some authors between very distinct animals. On my view of characters being of real importance for classification, only in so far as they reveal descent, we can clearly understand why analogical or adaptive character, although of the utmost importance to the welfare of the being, are almost valueless to the systematist. For animals, belonging to two most distinct lines of descent, may readily become adapted to similar conditions, and thus assume a close external resemblance; but such resemblances will not reveal--will rather tend to conceal their blood-relationship to their proper lines of descent. We can also understand the apparent paradox, that the very same characters are analogical when one class or order is compared with another, but give true affinities when the members of the same class or order are compared one with another: thus the shape of the body and fin-like limbs are only analogical when whales are compared with fishes, being adaptations in both classes for swimming through the water; but the shape of the body and fin-like limbs serve as characters exhibiting true affinity between the several members of the whale family; for these cetaceans agree in so many characters, great and small, that we cannot doubt that they have inherited their general shape of body and structure of limbs from a common ancestor. So it is with fishes.

As members of distinct classes have often been adapted by successive slight modifications to live under nearly similar circumstances,--to inhabit for instance the three elements of land, air, and water,--we can perhaps understand how it is that a numerical parallelism has sometimes been observed between the sub-groups in distinct classes. A naturalist, struck by a parallelism of this nature in any one class, by arbitrarily raising or sinking the value of the groups in other classes (and all our experien............

Join or Log In! You need to log in to continue reading
   
 

Login into Your Account

Email: 
Password: 
  Remember me on this computer.

All The Data From The Network AND User Upload, If Infringement, Please Contact Us To Delete! Contact Us
About Us | Terms of Use | Privacy Policy | Tag List | Recent Search  
©2010-2018 wenovel.com, All Rights Reserved