The term application has been selected as a proper one to distinguish machines that expend and apply power, from those that are employed in generating or transmitting power. Machines of application employed in manufacturing, and which expend their action on material, are directed to certain operations which are usually spoken of as processes, such as cutting, compressing, grinding, separating, and disintegrating.
By classifying these processes, it will be seen that there is in all but a few functions to be performed by machines, and that they all act upon a few general principles. Engineering tools employed in fitting are, for example, all directed to the process of cutting. Planing machines, lathes, drilling machines, and shaping machines are all cutting machines, acting upon the same general plan—that of a cleaving wedge propelled in straight or curved lines.
Cutting, as a process in converting material, includes the force to propel cutting edges, means to guide and control their action, and mechanism to sustain and adjust the material acted upon. In cutting with hand tools, the operator performs the two functions of propelling and guiding the tools with his hands; but in what [58] is called power operations, machines are made to perform these functions. In nearly all processes machines have supplanted hand labour, and it may be noticed in the history and development of machine tools that much has been lost in too closely imitating hand operations when machines were first applied. To be profitable, machines must either employ more force, guide tools with more accuracy, or move them at greater speed, than is attainable by hand. Increased speed may, although more seldom, be an object in the employment of machinery, as well as the guidance of implements or increased force in propelling them. The hands of workmen are not only limited as to the power that may be exerted, and unable to guide tools with accuracy, but are also limited to a slow rate of movement, so that machines can be employed with great advantage in many operations where neither the force nor guidance of tools are wanting.
There is nothing more interesting, or at the same time more useful, in the study of mechanics, than to analyse the action of cutting machines or other machinery of application, and to ascertain in examples that come under notice whether the main object of a machine is increased force, more accurate guidance, or greater speed than is attainable by hand operations. Cutting machines as explained may be directed to either of these objects singly, or to all of them together, or these objects may vary in their relative importance in different operations; but in all cases where machines are profitably employed, their action can be traced to one or more of the functions named.
To follow this matter further. It will be found in such machines as are directed mainly to augmenting force or increasing the amount of power that may be applied in any operation, such as sawing wood or stone, the effect produced when compared to hand labour is nearly as the difference in the amount of power applied; and the saving that such machines effect is generally in the same proportion. A machine that can expend ten horse-power in performing a certain kind of work, will save ten times as much as a machine directed to the same purpose expending but one horse-power; this of course applies to machines for the performance of the coarser kinds of work, and e............