At the close of the war with Tippoo Sahib, Major Lambton planned the triangulation of the country lying between Madras and the Malabar coast, a district which had been roughly surveyed, during the progress of the war, by Colonel Mackenzie. The Duke of Wellington gave his approval to the project, and his brother, the Governor-General of India, and Lord Clive (son of the great Clive), Governor of Madras, used their influence to aid Major Lambton in carrying out his design. The only astronomical instrument made245 use of by the first survey party was one of Ramsden’s zenith-sectors, which Lord Macartney had placed in the hands of Dinwiddie, the astronomer, for sale. A steel chain, which had been sent with Lord Macartney’s embassy to the Emperor of China and refused, was the only apparatus available for measuring.
Thus began the great Trigonometrical Survey of India, a work whose importance it is hardly possible to over-estimate. Conducted successively by Colonel Lambton, Sir George Everest, Sir Andrew Waugh, and Lieut.-Col. Walker (the present superintendent), the trigonometrical survey has been prosecuted with a skill and accuracy which renders it fairly comparable with the best work of European surveyors. But to complete in this style the survey of the whole of India would be the work of several centuries. The trigonometrical survey of Great Britain and Ireland has been already more than a century in progress, and is still unfinished. It can, therefore, be imagined that the survey of India—nearly ten times the size of the British Isles, and presenting difficulties a hundredfold greater than those which the surveyor in England has to encounter—is not a work which can be quickly completed.
But the growing demands of the public service have rendered it imperatively necessary that India should be rapidly and completely surveyed. This necessity led to the commencement of the Topographical Survey of India, a work which has been pushed forward at a surprising rate during the past few years. My readers246 may form some idea of the energy with which the survey is in progress, from the fact that Colonel Thuillier’s Report for the season 1866-67 announces the charting of an area half as large as Scotland, and the preparatory triangulation of an additional area nearly half as large as England.
In a period of thirty years, with but few surveying parties at first, and a slow increase in their number, an area of 160,000 square miles has been completed and mapped by the topographical department. The revenue surveyors have also supplied good maps (on a similar scale) of 364,000 square miles of country during the twenty years ending in 1866. Combining these results, we have an area of 524,000 square miles, or upwards of four times that of Great Britain and Ireland. For all this enormous area the surveyors have the records in a methodical and systematic form, fit for incorporation in the atlas of India. Nor does this estimate include the older revenue surveys of the North-western Provinces which, for want of proper supervision in former years, were never regularly reduced. The records of these surveys were destroyed in the Mutiny—chiefly in Hazaumbaugh and the south-western frontier Agency. The whole of these districts remain to be gone over in a style very superior to that of the last survey.
The extent of the country which has been charted may lead to the impression that the survey is little more than a hasty reconnaissance. This, however, is very far indeed from being the case. The preliminary triangulation, which is the basis of the topographical survey, is247 conducted with extreme care. In the present Report, for instance, we find that the discrepancies between the common sides of the triangles-in other words, the discrepancies between the results obtained by different observers-are in some cases less than one-tenth of an inch per mile; in others they are from one inch to a foot per mile; and in the survey of the Cossyah and Garrow Hills, where observations had to be taken to large objects, such as trees, rocks, &c., with no defined points for guidance, the results differ by as much as twenty-six inches per mile. These discrepancies must not only be regarded as insignificant in themselves, but must appear yet more trifling when it is remembered that they are not cumulative, inasmuch as the preliminary triangulation is itself dependent on the great trigonometrical survey.
Let us understand clearly what are the various forms of survey which are or have been in progress in India. There are three forms to be considered:—(1) The Great Trigonometrical Surveys; (2) The Revenue Surveys; and (3) the Topographical Surveys.
Great trigonometrical operations are extended in a straight course from one measured base to another. Every precaution which modern skill and science can suggest is taken in the measurement of each base-line, and in the various processes by which the survey is extended from one base-line to the other. The accuracy with which work of this sort is conducted may be estimated from the following instance. During the progress of the Ordnance Survey of Great Britain and248 Ireland, a base-line nearly eight miles long was measured near Lough Foyle, in Ireland, and another nearly seven miles long on Salisbury Plain. Trigonometrical operations were then extended from Lough Foyle to Salisbury Plain, a distance of about 340 miles; and the Salisbury base-line was calculated from the observations made over this long arc. The difference between the measured and calculated values of the base-line was less than five inches! As we have stated, the trigonometrical survey of India will bear comparison with the best work of our surveyors in England.
A revenue survey is prosecuted for the definition of the boundaries of estates and properties. The operations of such a survey are therefore carried on conformably to those boundaries.
The topographical survey of a country is defined by Sir A. Scott Waugh to imply ‘the measurement and delineation of the natural features of a country, and the works of man thereon, with the object of producing a complete and sufficiently accurate map. Being free from the trammels of boundaries of properties, the principal lines of operations must conform to the features of the country, and objects to be surveyed.’
The only safe basis for the topographical survey of a country is a system of accurate triangulation. And where the extent of country to be surveyed is large, there will always be a great risk of the accumulation of error in the triangulation itself; which must, therefore, be made to depend on the accurate results obtained by the great trigonometrical operations. In order to secure249 this result, fixed stations are established in the vicinity of the great trigonometrical series. Where this plan cannot be adopted, a network of large symmetrical triangles is thrown over the district to be surveyed, or boundary series of triangles are carried along the outline of the district or along convenient internal lines. The former of these methods is applicable to a hilly district, the latter to a flat country.
When the district to be surveyed has been triangulated, the work of filling-in the topographical details is commenced. Each triangle being of moderate extent, with sides from three to five miles in length, and the angular points being determined, as we have seen, with great exactness, it is evident that no considerable error can occur in filling-in the details. Hence, methods can be adopted in the final topographical work which would not be suitable for triangulation. The triangles can either be ‘measured up,’ or the observer may traverse from trigonometrical point to point, taking offsets and intersections; or, lastly, he may make use of the plane table. The two first methods require little comment; but the principle of plane-tabling enters so largely into Indian surveying, that this notice would be incomplete without a brief account of this simple and beautiful method.
The plane-table is a flat board turning on a vertical pivot. It bears the chart on which the observer is planning the country. Suppose, now, that two points A and B are determined, and that we require to mark in the position of a third point C:—It is clear that if we250 observed with a theodolite the angles A B C and B A C, we might lay these down on the chart with a protractor, and so the position of C would be determined, with an accuracy proportioned to the care with which the observations were made and the corresponding constructions applied to the chart. But in ‘plane-tabling’ a more direct plan is adopted. A ruler bearing sights, resembling those of a rifle, is so applied that the edge passing through the point A on the chart (the observer being situated at the real station A) passes through the point B on the chart, the l............