The years which have passed since Encke died have witnessed notable changes in the aspect of the science he loved so well. But we must look back over more than half a century, if we would form an estimate of the position of astronomy when Encke’s most notable work was achieved. At Seeberge, under Lindenau, Encke had been perfecting himself in the higher47 branches of mathematical calculation. He took the difficult work of determining the orbital motions of newly-discovered comets under his special charge, and Dr. Bruhns tells us that every comet which was detected during Encke’s stay at Seeberge was subjected to rigid scrutiny by the indefatigable mathematician. Before long a discovery of the utmost importance rewarded his persevering labours. Pons had detected on November 26, 1818, a comet of no very brilliant aspect, which was watched first at Marseilles, and then at Mannheim, until December 29. Encke next took up the work, and tracked the comet until January 12. Combining the observations made between December 22 and January 12, he assigned to the body a parabolic orbit. But he was not satisfied with the accordance between this path and the observed motions of the body. When he attempted to account for the motions of the comet by means of an orbit of comparatively short period, he was struck by the resemblance between the path thus deduced and that of Comet I, 1805. Gradually the idea dawned upon him that a new era was opening for science. Hitherto the only periodical comets which had been discovered except Lexell’s—the ‘lost comet’—had travelled in orbits extending far out into space beyond the paths of the most distant known planets. But now Encke saw reason to believe that he had to deal with a comet travelling within the orbit of Jupiter. On February 5, he wrote to the eminent mathematician Gauss, pointing out the results of his inquiries, and saying that he only waited for the en48couragement and authority of his former teacher to prosecute his researches to the end towards which they already seemed to point. Gauss, in reply, not only encouraged Encke to proceed, but counselled him as to the course he should pursue. The result we all know. Encke showed conclusively that the newly-discovered comet travels in a path of short period, and that it had already made its appearance several times in our neighbourhood.
From the date of this discovery, Encke took high rank among the astronomers of Europe. His subsequent labours by no means fell short of the promise which this, his first notable achievement, had afforded. If he effected less as an astronomical observer than many of his contemporaries, he was surpassed by few as a manipulator of those abstruse formul? by which the planetary perturbations are calculated. It was to the confidence engendered by this skill that we owe his celebrated discovery of the acceleration of the motion of the comet mentioned above. Assured that he had rightly estimated the disturbances to which the comet is subjected, he was able to pronounce confidently that some cause continually (though all but imperceptibly) impedes the passage of this body through space, and so—by one of those strange relations which the student of astronomy is familiar with—the continually retarded comet travels ever more swiftly along a continually diminishing orbit.
Bruhns’ Life of Encke is well worth reading, not only by those who are interested in Encke’s fame and49 work as an astronomer, but by the general reader. Encke the man is presented to our view, as well as Encke the astronomer. With loving pains the pupil of the great astronomer handles the theme he has selected. The boyhood of Encke, his studies, his soldier life in the great uprising against Napoleon in 1813, and his work at the Seeberge Observatory; his labours on comets and asteroids; his investigations of the transits of 1761 and 1769; his life as an academician, and as director of an important observatory; his orations at festival and funeral; and lastly, his illness and death, are described in these pages by one who held Encke in grateful remembrance as ‘teacher and master,’ and as a ‘fatherly friend.’
Not the least interesting feature of the work is the correspondence introduced into its pages. We find Encke in communication with Humboldt, with Bessel and Struve, with Hansen, Olbers, and Argelander; with a host, in fine, of living as well as of departed men of science.
(From Nature, March 10, 1870.)