Search      Hot    Newest Novel
HOME > Classical Novels > The Life of Sir Isaac Newton > CHAPTER IV.
Font Size:【Large】【Middle】【Small】 Add Bookmark  
CHAPTER IV.
  He delivers a Course of Optical Lectures at Cambridge—Is elected Fellow of the Royal Society—He communicates to them his Discoveries on the different Refrangibility and Nature of Light—Popular Account of them—They involve him in various Controversies—His Dispute with Pardies—Linus—Lucas—Dr. Hooke and Mr. Huygens—The Influence of these Disputes on the Mind of Newton.

Although Newton delivered a course of lectures on optics in the University of Cambridge in the years 1669, 1670, and 1671, containing his principal discoveries relative to the different refrangibility of light, yet it is a singular circumstance, that these discoveries should not have become public through the conversation or correspondence of his pupils. The Royal Society had acquired no knowledge of them till the beginning of 1672, and his reputation in that body was founded chiefly on his reflecting telescope. On the 23d December, 1671, the celebrated Dr. Seth Ward, Lord Bishop of Sarum, who was the author of several able works on astronomy, and had filled the astronomical chair at Oxford, proposed Mr. Newton as a Fellow of the Royal48 Society. The satisfaction which he derived from this circumstance appears to have been considerable; and in a letter to Mr. Oldenburg, of the 6th January, he says, “I am very sensible of the honour done me by the Bishop of Sarum in proposing me a candidate; and which, I hope, will be further conferred upon me by my election into the Society; and if so, I shall endeavour to testify my gratitude, by communicating what my poor and solitary endeavours can effect towards the promoting your philosophical designs.” His election accordingly took place on the 11th January, the same day on which the Society agreed to transmit a description of his telescope to Mr. Huygens at Paris. The notice of his election, and the thanks of the Society for the communication of his telescope, were conveyed in the same letter, with an assurance that the Society “would take care that all right should be done him in the matter of this invention.” In his next letter to Oldenburg, written on the 18th January, 1671–2, he announces his optical discoveries in the following remarkable manner: “I desire that in your next letter you would inform me for what time the Society continue their weekly meetings; because if they continue them for any time, I am purposing them, to be considered of and examined, an account of a philosophical discovery which induced me to the making of the said telescope; and I doubt not but will prove much more grateful than the communication of that instrument; being in my judgment the oddest, if not the most considerable detection which hath hitherto been made in the operations of nature.”

This “considerable detection” was the discovery of the different refrangibility of the rays of light which we have already explained, and which led to the construction of his reflecting telescope. It was communicated to the Royal Society in a letter to Mr. Oldenburg, dated February 6th, and excited great interest among its members. The “solemn49 thanks” of the meeting were ordered to be transmitted to its author for his “very ingenious discourse.” A desire was expressed to have it immediately printed, both for the purpose of having it well considered by philosophers, and for “securing the considerable notices thereof to the author against the arrogations of others;” and Dr. Seth Ward, Bishop of Salisbury, Mr. Boyle, and Dr. Hooke were desired to peruse and consider it, and to bring in a report upon it to the Society.

The kindness of this distinguished body, and the anxiety which they had already evinced for his reputation, excited on the part of Newton a corresponding feeling, and he gladly accepted of their proposal to publish his discourse in the monthly numbers in which the Transactions were then given to the world. “It was an esteem,” says he,12 “of the Royal Society for most candid and able judges in philosophical matters, encouraged me to present them with that discourse of light and colours, which since they have so favourably accepted of, I do earnestly desire you to return them my cordial thanks. I before thought it a great favour to be made a member of that honourable body; but I am now more sensible of the advantages; for believe me, sir, I do not only esteem it a duty to concur with you in the promotion of real knowledge; but a great privilege, that, instead of exposing discourses to a prejudiced and common multitude, (by which means many truths have been baffled and lost), I may with freedom apply myself to so judicious and impartial an assembly. As to the printing of that letter, I am satisfied in their judgment, or else I should have thought it too straight and narrow for public view. I designed it only to those that know how to improve upon hints of things; and, therefore, to spare tediousness, omitted many such remarks and experiments50 as might be collected by considering the assigned laws of refractions; some of which I believe, with the generality of men, would yet be almost as taking as any I described. But yet, since the Royal Society have thought it fit to appear publicly, I leave it to their pleasure: and perhaps to supply the aforesaid defects, I may send you some more of the experiments to second it (if it be so thought fit), in the ensuing Transactions.”

Following the order which Newton himself adopted, we have, in the preceding chapter, given an account of the leading doctrine of the different refrangibility of light, and of the attempts to improve the reflecting telescope which that discovery suggested. We shall now, therefore, endeavour to make the reader acquainted with the other discoveries respecting colours which he at this time communicated to the Royal Society.



Having determined, by experiments already described, that a beam of white light, as emitted from the sun, consisted of seven different colours, which possess different degrees of refrangibility, he measured the relative extent of the coloured spaces, and found them to have the proportions shown in fig. 4, which represents the prismatic spectrum, and which is nothing more than an elongated image of the sun produced by the rays being separated in different degrees from their original direction, the red being refracted least, and the violet most powerfully.

If we consider light as consisting of minute particles of matter, we may form some notion of its decomposition by the prism from the following popular illustration. If we take steel51 filings of seven different degrees of fineness and mix them together, there are two ways in which we may conceive the mass to be decomposed, or, what is the same thing, all the seven different kinds of filings separated from each other. By means of seven sieves of different degrees of fineness, and so made that the finest will just transmit the finest powder and detain all the rest, while the next in fineness transmits the two finest powders and detains all the rest, and so on, it is obvious that all the powders may be completely separated from each other. If we again mix all the steel filings, and laying them upon a table, hold high above them a flat bar magnet, so that none of the filings are attracted, then if we bring the magnet nearer and nearer, we shall come to a point where the finest filings are drawn up to it. These being removed, and the magnet brought nearer still, the next finest powders will be attracted, and so on till we have thus drawn out of the mass all the powders in a separate state. We may conceive the bar magnet to be inclined to the surface of the steel filings, and so moved over the mass, that at the end nearest to them the heaviest or coarsest will be attracted, and all the remotest and the finest or lighter filings, while the rest are attracted to intermediate points, so that the seven different filings are not only separated, but are found adhering in separate patches to the surface of the flat magnet. The first of these methods, with the sieves, may represent the process of decomposing light, by which certain rays of white light are absorbed, or stifled, or stopped in passing through bodies, while certain other rays are transmitted. The second method may represent the process of decomposing light by refraction, or by the attraction of certain rays farther from their original direction than other rays, and the different patches of filings upon the flat magnet may represent the spaces on the spectrum.

52 When a beam of white light is decomposed into the seven different colours of the spectrum, any particular colour, when once separated from the rest, is not susceptible of any change, or farther decomposition, whether it is refracted through prisms or reflected from mirrors. It may become fainter or brighter, but Newton never could, by any process, alter its colour or its refrangibility.

Among the various bodies which act upon light, it is conceivable that there might have been some which acted least upon the violet rays and most upon the red rays. Newton, however, found that this never took place; but that the same degree of refrangibility always belonged to the same colour, and the same colour to the same degree of refrangibility.

Having thus determined that the seven different colours of the spectrum were original or simple, he was led to the conclusion that whiteness or white light is a compound of all the seven colours of the spectrum, in the proportions in which they are represented in fig. 4. In order to prove this, or what is called the recomposition of white light out of the seven colours, he employed three different methods.



When the beam RR was separated into its elementary colours by the prism ABC, he received the53 colours on another prism BCB′, held either close to the first or a little behind it, and by the opposite refraction of this prism they were all refracted back into a beam of white light BW, which formed a white circular image on the wall at W, similar to what took place before any of the prisms were placed in its way.

The other method of recomposing white light consisted in making the spectrum fall upon a lens at some distance from it. When a sheet of white paper was held behind the lens, and removed to a proper distance, the colours were all refracted into a circular spot, and so blended as to reproduce light so perfectly white as not to differ sensibly from the direct light of the sun.

The last method of recomposing white light was one more suited to vulgar apprehension. It consisted in attempting to compound a white by mixing the coloured powders used by painters. He was aware that such colours, from their very nature, could not compose a pure white; but even this imperfection in the experiment he removed by an ingenious device. He accordingly mixed one part of red lead, four parts of blue bice, and a proper proportion of orpiment and verdigris. This mixture was dun, like wood newly cut, or like the human skin. He now took one-third of the mixture and rubbed it thickly on the floor of his room, where the sun shone upon it through the opened casement, and beside it, in the shadow, he laid a piece of white paper of the same size. “Then going from them to the distance of twelve or eighteen feet, so that he could not discern the unevenness of the surface of the powder nor the little shadows let fall from the gritty particles thereof; the powder appeared intensely white, so as to transcend even the paper itself in whiteness.” By adjusting the relative illumination of the powders and the paper, he was able to make them both appear of the very same degree of54 whiteness. “For,” says he, “when I was trying this, a friend coming to visit me, I stopped him at the door, and before I told him what the colours were, or what I was doing, I asked him which of the two whites were the best, and wherein they differed! And after he had at that distance viewed them well, he answered, that they were both good whites, and that he could not say which was best, nor wherein their colours differed.” Hence Newton inferred that perfect whiteness may be compounded of different colours.

As all the various shades of colour which appear in the material world can be imitated by intercepting certain rays in the spectrum, and uniting all the rest, and as bodies always appear of the same colour as the light in which they are placed, he concluded, that the colours of natural bodies are not qualities inherent in the bodies themselves, but arise from the disposition of the particles of each body to stop or absorb certain rays, and thus to reflect more copiously the rays which are not thus absorbed.

No sooner were these discoveries given to the world than they were opposed with a degree of virulence and ignorance which have seldom been combined in scientific controversy. Unfortunately for Newton, the Royal Society contained few individuals of pre-eminent talent capable of appreciating the truth of his discoveries, and of protecting him against the shafts of his envious and ignorant assailants. This eminent body, while they held his labours in the highest esteem, were still of opinion that his discoveries were fair subjects of discussion, and their secretary accordingly communicated to him all the papers which were written in opposition to his views. The first of these was by a Jesuit named Ignatius Pardies, Professor of Mathematics at Clermont, who pretended that the elongation of the sun’s image arose from the inequal incidence of the different rays on the first face of the prism, although55 Newton had demonstrated in his own discourse that this was not the case. In April, 1672, Newton transmitted to Oldenburg a decisive reply to the animadversions of Pardies; but, unwilling to be vanquished, this disciple of Descartes took up a fresh position, and maintained that the elongation of the spectrum might be explained by the diffusion of light on the hypothesis of Grimaldi, or by the diffusion of undulations on the hypothesis of Hook. Newton again replied to these feeble reasonings; but he contented himself with reiterating his original experiments, and confirming them by more popular arguments, and the vanquished Jesuit wisely quitted the field.

Another combatant soon sprung up in the person of one Francis Linus, a physician in Liege,13 who, on the 6th October, 1674, addressed a letter to a friend in London, containing animadversions on Newton&rsqu............
Join or Log In! You need to log in to continue reading
   
 

Login into Your Account

Email: 
Password: 
  Remember me on this computer.

All The Data From The Network AND User Upload, If Infringement, Please Contact Us To Delete! Contact Us
About Us | Terms of Use | Privacy Policy | Tag List | Recent Search  
©2010-2018 wenovel.com, All Rights Reserved