If one premiss is a simple proposition, the other a problematic, whenever the major premiss indicates possibility all the syllogisms will be perfect and establish possibility in the sense defined; but whenever the minor premiss indicates possibility all the syllogisms will be imperfect, and those which are negative will establish not possibility according to the definition, but that the major does not necessarily belong to any, or to all, of the minor. For if this is so, we say it is possible that it should belong to none or not to all. Let A be possible for all B, and let B belong to all C. Since C falls under B, and A is possible for all B, clearly it is possible for all C also. So a perfect syllogism results. Likewise if the premiss AB is negative, and the premiss BC is affirmative, the former stating possible, the latter simple attribution, a perfect syllogism results proving that A possibly belongs to no C.
It is clear that perfect syllogisms result if the minor premiss states simple belonging: but that syllogisms will result if the modality of the premisses is reversed, must be proved per impossibile. At the same time it will be evident that they are imperfect: for the proof proceeds not from the premisses assumed. First we must state that if B’s being follows necessarily from A’s being, B’s possibility will follow necessarily from A’s possibility. Suppose, the terms being so related, that A is possible, and B is impossible. If then that which is possible, when it is possible for it to be, might happen, and if that which is impossible, when it is impossible, could not happen, and if at the same time A is possible and B impossible, it would be possible for A to happen without B, and if to happen, then to be. For that which has happened, when it has happened, is. But we must take the impossible and the possible not only in the sphere of becoming, but also in the spheres of truth and predicability, and the various other spheres in which we speak of the possible: for it will be alike in all. Further we must understand the statement that B’s being depends on A’s being, not as meaning that if some single thing A is, B will be: for nothing follows of necessity from the being of some one thing, but from two at least, i.e. when the premisses are related in the manner stated to be that of the syllogism. For if C is predicated of D, and D of F, then C is necessarily predicated of F. And if each is possible, the conclusion also is possible. If then, for example, one should indicate the premisses by A, and the conclusion by B, it would not only result that if A is necessary B is necessary, but also that if A is possible, B is possible.
Since this is proved it is evident that if a false and not impossible assumption is made, the consequence of the assumption will also be false and not impossible: e.g. if A is false, but not impossible, and if B is the consequence of A, B also will be false but not impossible. For since it has been proved that if B’s being is the consequence of A’s being, then B’s possibility will follow from A’s possibility (and A is assumed to be possible), consequently B will be possible: for if it were impossible, the same thing would at the same time be possible and impossible.
Since we have defined these points, let A belong to all B, and B be possible for all C: it is necessary then that should be a possible attribute for all C. Suppose that it is not possible, but assume that B belongs to all C: this is false but not impossible. If then A is not possible for C but B belongs to all C, then A is not possible for all B: for a syllogism is formed in the third degree. But it was assumed that A is a possible attribute for all B. It is necessary then that A is possible for all C. For though the assumption we made is false and not impossible, the conclusion is impossible. It is possible also in the first figure to bring about the impossibility, by assuming that B belongs to C. For if B belongs to all C, and A is possible for all B, then A would be possible for all C. But the assumption was made that A is not possible for all C.
We must understand ‘that which belongs to all’ with no limitation in respect of time, e.g. to the present or to a particular period, but simply without qualification. For it is by the help of such premisses that we make syllogisms, since if the premiss is understood with reference to the present moment, there cannot be a syllogism. For nothing perhaps prevents ‘man’ belonging at a particular time to everything that is moving, i.e. if nothing else were moving: but ‘moving’ is possible for every horse; yet ‘man’ is possible for no horse. Further let the major term be ‘animal’, the middle ‘moving’, the the minor ‘man’. The premisses then will be as before, but the conclusion necessary, not possible. For man is necessarily animal. It is clear then that the universal must be understood simply, without limitation in respect of time.
Again let the premiss AB be universal and negative, and assume that A belongs to no B, but B possibly belongs to all C. These propositions being laid down, it is necessary that A possibly belongs to............