Search      Hot    Newest Novel
HOME > Science Fiction > Prior Analytics > Book I chapter 6
Font Size:【Large】【Middle】【Small】 Add Bookmark  
Book I chapter 6
But if one term belongs to all, and another to none, of a third, or if both belong to all, or to none, of it, I call such a figure the third; by middle term in it I mean that of which both the predicates are predicated, by extremes I mean the predicates, by the major extreme that which is further from the middle, by the minor that which is nearer to it. The middle term stands outside the extremes, and is last in position. A syllogism cannot be perfect in this figure either, but it may be valid whether the terms are related universally or not to the middle term.

If they are universal, whenever both P and R belong to S, it follows that P will necessarily belong to some R. For, since the affirmative statement is convertible, S will belong to some R: consequently since P belongs to all S, and S to some R, P must belong to some R: for a syllogism in the first figure is produced. It is possible to demonstrate this also per impossibile and by exposition. For if both P and R belong to all S, should one of the Ss, e.g. N, be taken, both P and R will belong to this, and thus P will belong to some R.

If R belongs to all S, and P to no S, there will be a syllogism to prove that P will necessarily not belong to some R. This may be demonstrated in the same way as before by converting the premiss RS. It might be proved also per impossibile, as in the former cases. But if R belongs to no S, P to all S, there will be no syllogism. Terms for the positive relation are animal, horse, man: for the negative relation animal, inanimate, man.

Nor can there be a syllogism when both terms are asserted of no S. Terms for the positive relation are animal, horse, inanimate; for the negative relation man, horse, inanimate-inanimate being the middle term.

It is clear then in this figure also when a syllogism will be possible and when not, if the terms are related universally. For whenever both the terms are affirmative, there will be a syllogism to prove that one extreme belongs to some of the other; but when they are negative, no syllogism will be possible. But when one is negative, the other affirmative, if the major is negative, the minor affirmative, there will be a syllogism to prove that the one extreme does not belong to some of the other: but if the relation is reversed, no syllogism will be possible. If one term is related universally to the middle, the other in part only, when both are affirmative there must be a syllogism, no matter which of the premisses is universal. For if R belongs to all S, P to some S, P must belong to some R. For since the affirmative statement is convertible S will belong to some P: consequently since R belongs to all S, and S to some P, R must also belong to some P: therefore P must belong to some R.

Again if R belongs to some S, and P to all S, P must belong to some R. This may be demonstrated in the same way as the preceding. And it is possible to demonstrate it also per impossibile and by exposition, as in the former cases. But if one term is affirmative, the other negative, and if the affirmative is universal, a syllogism will be possible whenever the minor term is affirmative. For if R belongs to all S, but P does not belong to some S, it is necessary that P does not belong to some R. For if P belongs to all R, and R belongs to all S, then P will belong to all S: but we assumed that it did not. Proof is possible also without reduction ad impossibile, if one of the Ss be taken to which P does not belong.

But whenever the major is affirmative, no syllogism will be possible, e.g. if P belongs to all S and R does not belong to some S. Terms for the universal affirmative relation are animate, man, animal. For the universal negative relation it is not possible to get terms, if R belongs to some S, and does not belong to some S. For if P belongs to all S, and R to some S, then P will belong to some R: but we assumed that it belongs to no R. We must put the matter as before.’ Since the expression ‘it does not belong to some’ is indefinite, it may be used truly of that also which belongs to none. But if R belongs to no S, no syllogism is possible, as has been shown. Clearly then no syllogism will be possible here.

But if the negative term is universal, whenever the major is negative and the minor affirmative there will be a syllogism. For if P belongs to no S, and R belongs to some S, P will not belong to some R: for we shall have the first figure again, if the premiss RS is converted.

But when the minor is negative, there will be no syllogism. Terms for the positive relation are animal, man, wild: for the negative relation, animal, science, wild-the middle in both being the term wild.

Nor is a syllogism possible when both are stated in the negative, but one is universal, the other particular. When the minor is related universally to the middle, take the terms animal, science, wild; animal, man, wild. When the major is related universally to the middle, take as terms for a negative relation raven, snow, white. For a positive relation terms cannot be found, if R belongs to some S, and does not belong to some S. For if P belongs to all R, and R to some S, then P belongs to some S: but we assumed that it belongs to no S. Our point, then, must be proved from the indefinite nature of the particular statement.

Nor is a syllogism possible anyhow, if each of the extremes belongs to some of the middle or does not belong, or one belongs and the other does not to some of the middle, or one belongs to some of the middle, the other not to all, or if the premisses are indefinite. Common terms for all are animal, man, white: animal, inanimate, white.

It is clear then in this figure also when a syllogism will be possible, and when not; and that if the terms are as stated, a syllogism results of necessity, and if there is a syllogism, the terms must be so related. It is clear also that all the syllogisms in this figure are imperfect (for all are made perfect by certain supplementary assumptions), and that it will not be possible to reach a universal conclusion by means of this figure, whether negative or affirmative.

All The Data From The Network AND User Upload, If Infringement, Please Contact Us To Delete! Contact Us
About Us | Terms of Use | Privacy Policy | Tag List | Recent Search  
©2010-2018 wenovel.com, All Rights Reserved