Search      Hot    Newest Novel
HOME > Short Stories > The Movements and Habits of Climbing Plants > Chapter III. — Tendril-Bearers
Font Size:【Large】【Middle】【Small】 Add Bookmark  
Chapter III. — Tendril-Bearers
Nature of tendrils — BIGNONIACEAE, various species of, and their different modes of climbing — Tendrils which avoid the light and creep into crevices — Development of adhesive discs — Excellent adaptations for seizing different kinds of supports. — POLEMONIACEAE— Cobaea scandens much branched and hooked tendrils, their manner of action — LEGUMINOSAE— COMPOSITAE— SMILACEAE— Smilax aspera, its inefficient tendrils — FUMARIACEAE— Corydalis claviculata, its state intermediate between that of a leaf-climber and a tendril-bearer.

By tendrils I mean filamentary organs, sensitive to contact and used exclusively for climbing. By this definition, spines, hooks and rootlets, all of which are used for climbing, are excluded. True tendrils are formed by the modification of leaves with their petioles, of flower-peduncles, branches, 24 and perhaps stipules. Mohl, who includes under the name of tendrils various organs having a similar external appearance, classes them according to their homological nature, as being modified leaves, flower-peduncles, &c. This would be an excellent scheme; but I observe that botanists are by no means unanimous on the homological nature of certain tendrils. Consequently I will describe tendril-bearing plants by natural families, following Lindley’s classification; and this will in most cases keep those of the same nature together. The species to be described belong to ten families, and will be given in the following order:— Bignoniaceae, Polemoniaceae, Leguminosae, Compositae, Smilaceae, Fumariaceae, Cucurbitaceae, Vitaceae, Sapindaceae, Passifloraceae. 25

BIGNONIACEAE. — This family contains many tendril-bearers, some twiners, and some root-climbers. The tendrils always consist of modified leaves. Nine species of Bignonia, selected by hazard, are here described, in order to show what diversity of structure and action there may be within the same genus, and to show what remarkable powers some tendrils possess. The species, taken together, afford connecting links between twiners, leaf-climbers, tendril-bearers, and root-climbers.

Bignonia (an unnamed species from Kew, closely allied to B. unguis, but with smaller and rather broader leaves). — A young shoot from a cut-down plant made three revolutions against the sun, at an average rate of 2 hrs. 6m. The stem is thin and flexible; it twined round a slender vertical stick, ascending from left to right, as perfectly and as regularly as any true twining-plant. When thus ascending, it makes no use of its tendrils or petioles; but when it twined round a rather thick stick, and its petioles were brought into contact with it, these curved round the stick, showing that they have some degree of irritability. The petioles also exhibit a slight degree of spontaneous movement; for in one case they certainly described minute, irregular, vertical ellipses. The tendrils apparently curve themselves spontaneously to the same side with the petioles; but from various causes, it was difficult to observe the movement of either the tendrils or petioles, in this and the two following species. The tendrils are so closely similar in all respects to those of B. unguis, that one description will suffice.

Bignonia unguis. — The young shoots revolve, but less regularly and less quickly than those of the last species. The stem twines imperfectly round a vertical stick, sometimes reversing its direction, in the same manner as described in so many leaf-climbers; and this plant though possessing tendrils, climbs to a certain extent like a leaf-climber. Each leaf consists of a petiole bearing a pair of leaflets, and terminates in a tendril, which is formed by the modification of three leaflets, and closely resembles that above figured (fig. 5). But it is a little larger, and in a young plant was about half an inch in length. It is curiously like the leg and foot of a small bird, with the hind toe cut off. The straight leg or tarsus is longer than the three toes, which are of equal length, and diverging, lie in the same plane. The toes terminate in sharp, hard claws, much curved downwards, like those on a bird’s foot. The petiole of the leaf is sensitive to contact; even a small loop of thread suspended for two days caused it to bend upwards; but the sub-petioles of the two lateral leaflets are not sensitive. The whole tendril, namely, the tarsus and the three toes, are likewise sensitive to contact, especially on their under surfaces. When a shoot grows in the midst of thin branches, the tendrils are soon brought by the revolving movement of the internodes into contact with them; and then one toe of the tendril or more, commonly all three, bend, and after several hours seize fast hold of the twigs, like a bird when perched. If the tarsus of the tendril comes into contact with a twig, it goes on slowly bending, until the whole foot is carried quite round, and the toes pass on each side of the tarsus and seize it. In like manner, if the petiole comes into contact with a twig, it bends round, carrying the tendril, which then seizes its own petiole or that of the opposite leaf. The petioles move spontaneously, and thus, when a shoot attempts to twine round an upright stick, those on both sides after a time come into contact with it, and are excited to bend. Ultimately the two petioles clasp the stick in opposite directions, and the foot-like tendrils, seizing on each other or on their own petioles, fasten the stem to the support with surprising security. The tendrils are thus brought into action, if the stem twines round a thin vertical stick; and in this respect the present species differs from the last. Both species use their tendrils in the same manner when passing through a thicket. This plant is one of the most efficient climbers which I have observed; and it probably could ascend a polished stem incessantly tossed by heavy storms. To show how important vigorous health is for the action of all the parts, I may mention that when I first examined a plant which was growing moderately well, though not vigorously, I concluded that the tendrils acted only like the hooks on a bramble, and that it was the most feeble and inefficient of all climbers!

Bignonia Tweedyana. — This species is closely allied to the last, and behaves in the same manner; but perhaps twines rather better round a vertical stick. On the same plant, one branch twined in one direction and another in an opposite direction. The internodes in one case made two circles, each in 2 hrs. 33 m. I was enabled to observe the spontaneous movements of the petioles better in this than in the two preceding species: one petiole described three small vertical ellipses in the course of 11 hrs., whilst another moved in an irregular spire. Some little time after a stem has twined round an upright stick, and is securely fastened to it by the clasping petioles and tendrils, it emits aerial roots from the bases of its leaves; and these roots curve partly round and adhere to the stick. This species of Bignonia, therefore, combines four different methods of climbing generally characteristic of distinct plants, namely, twining, leaf-climbing, tendril-climbing, and root-climbing.

In the three foregoing species, when the foot-like tendril has caught an object, it continues to grow and thicken, and ultimately becomes wonderfully strong, in the same manner as the petioles of leaf-climbers. If the tendril catches nothing, it first slowly bends downwards, and then its power of clasping is lost. Very soon afterwards it disarticulates itself from the petiole, and drops off like a leaf in autumn. I have seen this process of disarticulation in no other tendrils, for these, when they fail to catch an object, merely wither away.

Bignonia venusta. — The tendrils differ considerably from those of the previous species. The lower part, or tarsus, is four times as long as the three toes; these are of equal length and diverge equally, but do not lie in the same plane; their tips are bluntly hooked, and the whole tendril makes an excellent grapnel. The tarsus is sensitive on all sides; but the three toes are sensitive only on their outer surfaces. The sensitiveness is not much developed; for a slight rubbing with a twig did not cause the tarsus or the toes to become curved until an hour had elapsed, and then only in a slight degree. Subsequently they straightened themselves. Both the tarsus and toes can seize well hold of sticks. If the stem is secured, the tendrils are seen spontaneously to sweep large ellipses; the two opposite tendrils moving independently of one another. I have no doubt, from the analogy of the two following allied species, that the petioles also move spontaneously; but they are not irritable like those of B. unguis and B. Tweedyana. The young internodes sweep large circles, one being completed in 2 hrs. 15 m., and a second in 2 hrs. 55 m. By these combined movements of the internodes, petioles, and grapnel-like tendrils, the latter are soon brought into contact with surrounding objects. When a shoot stands near an upright stick, it twines regularly and spirally round it. As it ascends, it seizes the stick with one of its tendrils, and, if the stick be thin, the right-and left-hand tendrils are alternately used. This alternation follows from the stem necessarily taking one twist round its own axis for each completed circle.

The tendrils contract spirally a short time after catching any object; those which catch nothing merely bend slowly downwards. But the whole subject of the spiral contraction of tendrils will be discussed after all the tendril-bearing species have been described.

Bignonia littoralis. — The young internodes revolve in large ellipses. An internode bearing immature tendrils made two revolutions, each in 3 hrs. 50 m.; but when grown older with the tendrils mature, it made two ellipses, each at the rate of 2 hrs. 44 m. This species, unlike the preceding, is incapable of twining round a stick: this does not appear to be due to any want of flexibility in the internodes or to the action of the tendrils, and certainly not to any want of the revolving power; nor can I account for the fact. Nevertheless the plant readily ascends a thin upright stick by seizing a point above with its two opposite tendrils, which then contract spirally. If the tendrils seize nothing, they do not become spiral.

The species last described, ascended a vertical stick by twining spirally and by seizing it alternately with its opposite tendrils, like a sailor pulling himself up a rope, hand over hand; the present species pulls itself up, like a sailor seizing with both hands together a rope above his head.

The tendrils are similar in structure to those of the last species. They continue growing for some time, even after they have clasped an object. When fully grown, though borne by a young plant, they are 9 inches in length. The three divergent toes are shorter relatively to the tarsus than in the former species; they are blunt at their tips and but slightly hooked; they are not quite equal in length, the middle one being rather longer than the others. Their outer surfaces are highly sensitive; for when lightly rubbed with a twig, they became perceptibly curved in 4 m. and greatly curved in 7 m. In 7 hrs. they became straight again and were ready to re-act. The tarsus, for the space of one inch close to the toes, is sensitive, but in a rather less degree than the toes; for the latter after a slight rubbing, became curved in about half the time. Even the middle part of the tarsus is sensitive to prolonged contact, as soon as the tendril has arrived at maturity. After it has grown old, the sensitiveness is confined to the toes, and these are only able to curl very slowly round a stick. A tendril is perfectly ready to act, as soon as the three toes have diverged, and at this period their outer surfaces first become irritable. The irritability spreads but little from one part when excited to another: thus, when a stick was caught by the part immediately beneath the three toes, these seldom clasped it, but remained sticking straight out.

The tendrils revolve spontaneously. The movement begins before the tendril is converted into a three-pronged grapnel by the divergence of the toes, and before any part has become sensitive; so that the revolving movement is useless at this early period. The movement is, also, now slow, two ellipses being completed conjointly in 24 hrs. 18 m. A mature tendril made an ellipse in 6 hrs.; so that it moved much more slowly than the internodes. The ellipses which were swept, both in a vertical and horizontal plane, were of large size. The petioles are not in the least sensitive, but revolve like the tendrils. We thus see that the young internodes, the petioles, and the tendrils all continue revolving together, but at different rates. The movements of the tendrils which rise opposite one another are quite independent. Hence, when the whole shoot is allowed freely to revolve, nothing can be more intricate than the course followed by the extremity of each tendril. A wide space is thus irregularly searched for some object to be grasped.

One other curious point remains to be mentioned. In the course of a few days after the toes have closely clasped a stick, their blunt extremities become developed, though not invariably, into irregular disc-like balls which have the power of adhering firmly to the wood. As similar cellular outgrowths will be fully described under B. capreolata, I will here say nothing more about them.

Bignonia aequinoctialis, var. Chamberlaynii. — The internodes, the elongated non-sensitive petioles, and the tendrils all revolve. The stem does not twine, but ascends a vertical stick in the same manner as the last species. The tendrils also resemble those of the last species, but are shorter; the three toes are more unequal in length, the two outer ones being about one-third shorter and rather thinner than the middle toe; but they vary in this respect. They terminate in small hard points; and what is important, cellular adhesive discs are not developed. The reduced size of two of the toes as well as their lessened sensitiveness, seem to indicate a tendency to abortion; and on one of my plants the first-formed tendrils were sometimes simple, that is, were not divided into three toes. We are thus naturally led to the three following species with undivided tendrils

Bignonia speciosa. — The young shoots revolve irregularly, making narrow ellipses, spires or circles, at rates varying from 3 hrs. 30 m. to 4 hrs. 40 m.; but they show no tendency to twine. Whilst the plant is young and does not require a support, tendrils are not developed. Those borne by a moderately young plant were five inches in length. They revolve spontaneously, as do the short and non-sensitive petioles. When rubbed, they slowly bend to the rubbed side and subsequently straighten themselves; but they are not highly sensitive. There is something strange in their behaviour: I repeatedly placed close to them, thick and thin, rough and smooth sticks and posts, as well as string suspended vertically, but none of these objects were well seized. After clasping an upright stick, they repeatedly loosed it again, and often would not seize it at all, or their extremities did not coil closely round. I have observed hundreds of tendrils belonging to various Cucurbitaceous, Passifloraceous, and Leguminous plants, and never saw one behave in this manner. When, however, my plant had grown to a height of eight or nine feet, the tendrils acted much better. They now seized a thin, upright stick horizontally, that is, at a point on their own level, and not some way up the stick as in the case of all the previous species. Nevertheless, the non-twining stem was enabled by this means to ascend the stick.

The extremity of the tendril is almost straight and sharp. The whole terminal portion exhibits a singular habit, which in an animal would be called an instinct; for it continually searches for any little crevice or hole into which to insert itself. I had two young plants; and, after having observed this habit, I placed near them posts, which had been bored by beetles, or had become fissured by drying. The tendrils, by their own movement and by that of the internodes, slowly travelled over the surface of the wood, and when the apex came to a hole or fissure it inserted itself; in order to effect this the extremity for a length of half or quarter of an inch, would often bend itself at right angles to the basal part. I have watched this process between twenty and thirty times. The same tendril would frequently withdraw from one hole and insert its point into a second hole. I have also seen a tendril keep its point, in one case for 20 hrs. and in another for 36 hrs., in a minute hole, and then withdraw it. Whilst the point is thus temporarily inserted, the opposite tendril goes on revolving.

The whole length of a tendril often fits itself closely to any surface of wood with which it has come into contact; and I have observed one bent at right angles, from having entered a wide and deep fissure, with its apex abruptly re-bent and inserted into a minute lateral hole. After a tendril has clasped a stick, it contracts spirally; if it remains unattached it hangs straight downwards. If it has merely adapted itself to the inequalities of a thick post, though it has clasped nothing, or if it has inserted its apex into some little fissure, this stimulus suffices to induce spiral contraction; but the contraction always draws the tendril away from the post. So that in every case these movements, which seem so nicely adapted for some purpose, were useless. On one occasion, however, the tip became permanently jammed into a narrow fissure. I fully expected, from the analogy of B. capreolata and B. littoralis, that the tips would have been developed into adhesive discs; but I could never detect even a trace of this process. There is therefore at present something unintelligible about the habits of this plant.

Bignonia picta. — This species closely resembles the last in the structure and movements of its tendrils. I also casually examined a fine growing plant of the allied B. Lindleyi, and this apparently behaved in all respects in the same manner.

Bignonia capreolata. — We now come to a species having tendrils of a different type; but first for the internodes. A young shoot made three large revolutions, following the sun, at an average rate of 2 hrs. 23 m. The stem is thin and flexible, and I have seen one make four regular spiral turns round a thin upright stick, ascending of course from right to left, and therefore in a reversed direction compared with the before described species. Afterwards, from the interference of the tendrils, it ascended either straight up the stick or in an irregular spire. The tendrils are in some respects highly remarkable. In a young plant they were about 2.5 inches in length and much branched, the five chief branches apparently representing two pairs of leaflets and a terminal one. Each branch is, however, bifid or more commonly trifid towards the extremity, with the points blunt yet distinctly hooked. A tendril bends to any side which is lightly rubbed, and subsequently becomes straight again; but a loop of thread weighing 0.25th of a grain produced no effect. On two occasions the terminal branches became slightly curved in 10 m. after they had touched a stick; and in 30 m. the tips were curled quite round it. The basal part is less sensitive. The tendrils revolved in an apparently capricious manner, sometimes very slightly or not at all; at other times they described large regular ellipses. I could detect no spontaneous movement in the petioles of the leaves.

Whilst the tendrils are revolving more or less regularly, another remarkable movement takes place, namely, a slow inclination from the light towards the darkest side of the house. I repeatedly changed the position of my plants, and some little time after the revolving movement had ceased, the successively formed tendrils always ended by pointing to the darkest side. When I placed a thick post near a tendril, between it and the light, the tendril pointed in that direction. In two instances a pair of leaves stood so that one of the two tendrils was directed towards the light and the other to the darkest side of the house; the latter did not move, but the opposite one bent itself first upwards and then right over its fellow, so that the two became parallel, one above the other, both pointing to the dark: I then turned the plant half round; and the tendril which had turned over recovered its original position, and the opposite one which had not before moved, now turned over to the dark side. Lastly, on another plant, three pairs of tendrils were produced at the same time by three shoots, and all happened to be differently directed: I placed the pot in a box open only on one side, and obliquely facing the light; in two days all six tendrils pointed with unerring truth to the darkest corner of the box, though to do this each had to bend in a different manner. Six wind-vanes could not have more truly shown the direction of the wind, than did these branched tendrils the course of the stream of light which entered the box. I left these tendrils undisturbed for above 24 hrs., and then turned the pot half round; but they had now lost their power of movement, and could not any longer avoid the light.

When a tendril has not succeeded in clasping a support, either through its own revolving movement or that of the shoot, or by turning towards any object which intercepts the light, it bends vertically downwards and then towards its own stem, which it seizes together with the supporting stick, if there be one. A little aid is thus given in keeping the stem secure. If the tendril seizes nothing, it does not contract spirally, but soon withers away and drops off. If it seizes an object, all the branches contract spirally.

I have stated that after a tendril has come into contact with a stick, it bends round it in about half an hour; but I repeatedly observed, as in the case of B. speciosa and its allies, that it often again loosed the stick; sometimes seizing and loosing the same stick three or four times. Knowing that the tendrils avoided the light, I gave them a glass tube blackened within, and a well-blackened zinc plate: the branches curled round the tube and abruptly bent themselves round the edges of the zinc plate; but they soon recoiled from these objects with what I can only call disgust, and straightened themselves. I then placed a post with extremely rugged bark close to a pair of tendrils; twice they touched it for an hour or two, and twice they withdrew; at last one of the hooked extremities curled round and firmly seized an excessively minute projecting point of bark, and then the other branches spread themselves out, following with accuracy every inequality of the surface. I afterwards placed near the plant a post without bark but much fissured, and the points of the tendrils crawled into all the crevices in a beautiful manner. To my surprise, I observed that the tips of the immature tendrils, with the branches not yet fully separated, likewise crawled just like roots into the minutest crevices. In two or three days after the tips had thus crawled into the crevices, or after their hooked ends had seized minute points, the final process, now to be described, commenced.

This process I discovered by having accidentally left a piece of wool near a tendril; and this led me to bind a quantity of flax, moss, and wool loosely round sticks, and to place them near tendrils. The wool must not be dyed, for these tendrils are excessively sensitive to some poisons. The hooked points soon caught hold of the fibres, even loosely floating fibres, and now there was no recoiling; on the contrary, the excitement caused the hooks to penetrate the fibrous mass and to curl inwards, so that each hook caught firmly one or two fibres, or a small bundle of them. The tips and the inner surfaces of the hooks now began to swell, and in two or three days were visibly enlarged. After a few more days the hooks were converted into whitish, irregular balls, rather above the 0.05th of an inch (1.27 mm.) in diameter, formed of coarse cellular tissue, which sometimes wholly enveloped and concealed the hooks themselves. The surfaces of these balls secrete some viscid resinous matter, to which the fibres of the flax, &c., adhere. When a fibre has become fastened to the surface, the cellular tissue does not grow directly beneath it, but continues to grow closely on each side; so that when several adjoining fibres, though excessively thin, were caught, so many crests of cellular matter, each not as thick as a human hair, grew up between them, and these, arching over on both sides, adhered firmly together. As the whole surface of the ball continues to grow, fresh fibres adhere and are afterwards enveloped; so that I have seen a little ball with between fifty and sixty fibres of flax crossing it at various angles and all embedded more or less deeply. Every gradation in the process could be followed — some fibres merely sticking to the surface, others lying in more or less deep furrows, or deeply embedded, or passing through the very centre of the cellular ball. The embedded fibres are so closely clasped that they cannot be withdrawn. The outgrowing tissue has so strong a tendency to unite, that two balls produced by distinct tendrils sometimes unite and grow into a single one.

On one occasion, when a tendril had curled round a stick, half an inch in diameter, an adhesive disc was formed; but this does not generally occur in the case of smooth sticks or posts. If, however, the tip catches a minute projecting point, the other branches form discs, especially if they find crevices to crawl into. The tendrils failed to attach themselves to a brick wall.

I infer from the adherence of the fibres to the discs or balls, that these secrete some resinous adhesive matter; and more especially from such fibres becoming loose if immersed in sulphuric ether. This fluid likewise removes small, brown, glistening points which can generally be seen on the surfaces of the older discs. If the hooked extremities of the tendrils do not touch anything, discs, as far as I have seen, are never formed; 26 but temporary contact during a moderate time suffices to cause their development. I have seen eight discs formed on the same tendril. After their development the tendrils contract spirally, and become woody and very strong. A tendril in this state supported nearly seven ounces, and would apparently have supported a considerably greater weight, had not the fibres of flax to which the discs were attached yielded.

From the facts now given, we may infer that though the tendrils of this Bignonia can occasionally adhere to smooth cylindrical sticks and often to rugged bark, yet that they are specially adapted to climb trees clothed with lichens, mosses, or other such productions; and I hear from Professor Asa Gray that the Polypodium incanum abounds on the forest-trees in the districts of North America where this species of Bignonia grows. Finally, I may remark how singular a fact it is that a leaf should be metamorphosed into a branched organ which turns from the light, and which can by its extremities either crawl like roots into crevices, or seize hold of minute projecting points, these extremities afterwards forming cellular outgrowths which secrete an adhesive cement, and then envelop by their continued growth the finest fibres.

Eccremocarpus scaber (Bignoniaceae). — Plants, though growing pretty well in my green-house, showed no spontaneous movements in their shoots or tendrils; but when removed to the hot-house, the young internodes revolved at rates varying from 3 hrs. 15 m. to 1 hr. 13 m. One large circle was swept at this latter unusually quick rate; but generally the circles or ellipses were small, and sometimes the course pursued was quite irregular. An internode, after making several revolutions, sometimes stood still for 12 hrs. or 18 hrs., and then recommenced revolving. Such strongly marked interruptions in the movements of the internodes I have observed in hardly any other plant.

The leaves bear four leaflets, themselves subdivided, and terminate in much-branched tendrils. The main petiole of the leaf, whilst young, moves spontaneously, and follows nearly the same irregular course and at about the same rate as the internodes. The movement to and from the stem is the most conspicuous, and I have seen the chord of a curved petiole which formed an angle of 59 degrees with the stem, in an hour afterwards making an angle of 106 degrees. The two opposite petioles do not move together, and one is sometimes so much raised as to stand close to the stem, whilst the other is not far from horizontal. The basal part of the petiole moves less than the distal part. The tendrils, besides being carried by the moving petioles and internodes, themselves move spontaneously; and the opposite tendrils occasionally move in opposite directions. By these combined movements of the young internodes, petioles, and tendrils, a considerable space is swept in search of a support.

In young plants the tendrils are about three inches in length: they bear two lateral and two terminal branches; and each branch bifurcates twice, with the tips terminating in blunt double hooks, having both points directed to the same side. All the branches are sensitive on all sides; and after being lightly rubbed, or after coming into contact with a stick, bend in about 10 m. One which had become curved in 10 m. after a light rub, continued bending for between 3 hrs. and 4 hrs., and became straight again in 8 hrs. or 9 hrs. Tendrils, which have caught nothing, ultimately contract into an irregular spire, as they likewise do, only much more quickly, after clasping a support. In both cases the main petiole bearing the leaflets, which is at first straight and inclin............
Join or Log In! You need to log in to continue reading
   
 

Login into Your Account

Email: 
Password: 
  Remember me on this computer.

All The Data From The Network AND User Upload, If Infringement, Please Contact Us To Delete! Contact Us
About Us | Terms of Use | Privacy Policy | Tag List | Recent Search  
©2010-2018 wenovel.com, All Rights Reserved