Search      Hot    Newest Novel
HOME > Classical Novels > The Power of Movement in Plants > CHAPTER XII. CONCLUDING REMARKS.
Font Size:【Large】【Middle】【Small】 Add Bookmark  
   Nature of the circumnutating movement—History of a germinating seed—The   radicle first protrudes and circumnutates—Its tip highly sensitive—
  Emergence of the hypocotyl or of the epicotyl from the ground under the
  form of an arch - Its circumnutation and that of the cotyledons—The
  seedling throws up a leaf-bearing stem—The circumnutation of all the parts
  or organs—Modified circumnutation—Epinasty and hyponasty—Movements of
  climbing plants—Nyctitropic movements—Movements excited by light and
  gravitation—Localised sensitiveness—Resemblance between the movements of
  plants and animals—The tip of the radicle acts like a brain.
IT may be useful to the reader if we briefly sum up the chief conclusions, which, as far as we can judge, have been fairly well established by the observations given in this volume. All the parts or organs in every plant whilst they continue to grow, and some parts which are provided with pulvini after they have ceased to grow, are continually circumnutating. This movement commences even before the young seedling has broken through the ground. The nature of the movement and its causes, as far as ascertained, have been briefly described in the Introduction. Why every part of a plant whilst it is growing, and in some cases after growth has ceased, should have its cells rendered more turgescent and its cell-walls more extensile first on one side and then on another, thus inducing circumnutation is not known. It would appear as if the changes in the cells required periods of rest. [page 547]
In some cases, as with the hypocotyls of Brassica, the leaves of Dionaea and the joints of the Gramineae, the circumnutating movement when viewed under the microscope is seen to consist of innumerable small oscillations. The part under observation suddenly jerks forwards for a length of .002 to .001 of an inch, and then slowly retreats for a part of this distance; after a few seconds it again jerks forwards, but with many intermissions. The retreating movement apparently is due to the elasticity of the resisting tissues. How far this oscillatory movement is general we do not know, as not many circumnutating plants were observed by us under the microscope; but no such movement could be detected in the case of Drosera with a 2-inch object-glass which we used. The phenomenon is a remarkable one. The whole hypocotyl of a cabbage or the whole leaf of a Dionaea could not jerk forwards unless a very large number of cells on one side were simultaneously affected. Are we to suppose that these cells steadily become more and more turgescent on one side, until the part suddenly yields and bends, inducing what may be called a microscopically minute earthquake in the plant; or do the cells on one side suddenly become turgescent in an intermittent manner; each forward movement thus caused being opposed by the elasticity of the tissues?
Circumnutation is of paramount importance in the life of every plant; for it is through its modification that many highly beneficial or necessary movements have been acquired. When light strikes one side of a plant, or light changes into darkness, or when gravitation acts on a displaced part, the plant is enabled in some unknown manner to increase the always varying turgescence of the cells on one side; so that the ordinary circumnutating movement is [page 548] modified, and the part bends either to or from the exciting cause; or it may occupy a new position, as in the so-called sleep of leaves. The influence which modifies circumnutation may be transmitted from one part to another. Innate or constitutional changes, independently of any external agency, often modify the circumnutating movements at particular periods of the life of the plant. As circumnutation is universally present, we can understand how it is that movements of the same kind have been developed in the most distinct members of the vegetable series. But it must not be supposed that all the movements of plants arise from modified circumnutation; for, as we shall presently see, there is reason to believe that this is not the case.
Having made these few preliminary remarks, we will in imagination take a germinating seed, and consider the part which the various movements play in the life-history of the plant. The first change is the protrusion of the radicle, which begins at once to circumnutate. This movement is immediately modified by the attraction of gravity and rendered geotropic. The radicle, therefore, supposing the seed to be lying on the surface, quickly bends downwards, following a more or less spiral course, as was seen on the smoked glass-plates. Sensitiveness to gravitation resides in the tip; and it is the tip which transmits some influence to the adjoining parts, causing them to bend. As soon as the tip, protected by the root-cap, reaches the ground, it penetrates the surface, if this be soft or friable; and the act of penetration is apparently aided by the rocking or circumnutating movement of the whole end of the radicle. If the surface is compact, and cannot easily be penetrated, then [page 549] the seed itself, unless it be a heavy one, is displaced or lifted up by the continued growth and elongation of the radicle. But in a state of nature seeds often get covered with earth or other matter, or fall into crevices, etc., and thus a point of resistance is afforded, and the tip can more easily penetrate the ground. But even with seeds lying loose on the surface there is another aid: a multitude of excessively fine hairs are emitted from the upper part of the radicle, and these attach themselves firmly to stones or other objects lying on the surface, and can do so even to glass; and thus the upper part is held down whilst the tip presses against and penetrates the ground. The attachment of the root-hairs is effected by the liquefaction of the outer surface of the cellulose walls, and by the subsequent setting hard of the liquefied matter. This curious process probably takes place, not for the sake of the attachment of the radicles to superficial objects, but in order that the hairs may be brought into the closest contact with the particles in the soil, by which means they can absorb the layer of water surrounding them, together with any dissolved matter.
After the tip has penetrated the ground to a little depth, the increasing thickness of the radicle, together with the root-hairs, hold it securely in its place; and now the force exerted by the longitudinal growth of the radicle drives the tip deeper into the ground. This force, combined with that due to transverse growth, gives to the radicle the power of a wedge. Even a growing root of moderate size, such as that of a seedling bean, can displace a weight of some pounds. It is not probable that the tip when buried in compact earth can actually circumnutate and thus aid its downward passage, but the circumnutating movement will facilitate the tip entering any lateral [page 550] or oblique fissure in the earth, or a burrow made by an earth-worm or larva; and it is certain that roots often run down the old burrows of worms. The tip, however, in endeavouring to circumnutate, will continually press against the earth on all sides, and this can hardly fail to be of the highest importance to the plant; for we have seen that when little bits of card-like paper and of very thin paper were cemented on opposite sides of the tip, the whole growing part of the radicle was excited to bend away from the side bearing the card or more resisting substance, towards the side bearing the thin paper. We may therefore feel almost sure that when the tip encounters a stone or other obstacle in the ground, or even earth more compact on one side than the other, the root will bend away as much as it can from the obstacle or the more resisting earth, and will thus follow with unerring skill a line of least resistance.
The tip is more sensitive to prolonged contact with an object than to gravitation when this acts obliquely on the radicle, and sometimes even when it acts in the most favourable direction at right angles to the radicle. The tip was excited by an attached bead of shellac weighing less than 1/200th of a grain (0.33 mg.); it is therefore more sensitive than the most delicate tendril, namely, that of Passiflora gracilis, which was barely acted on by a bit of wire weighing 1/50th of a grain. But this degree of sensitiveness is as nothing compared with that of the glands of Drosera, for these are excited by particles weighing only 1/78740 of a grain. The sensitiveness of the tip cannot be accounted for by its being covered by a thinner layer of tissue than the other parts, for it is protected by the relatively thick root-cap. It is remarkable that although the radicle bends away, when one side of the tip is slightly touched [page 551] with caustic, yet if the side be much cauterised the injury is too great, and the power of transmitting some influence to the adjoining parts causing them to bend, is lost. Other analogous cases are known to occur.
After a radicle has been deflected by some obstacle, geotropism directs the tip again to grow perpendicularly downwards; but geotropism is a feeble power, and here, as Sachs has shown, another interesting adaptive movement comes into play; for radicles at a distance of a few millimeters from the tip are sensitive to prolonged contact in such a manner that they bend towards the touching object, instead of from it as occurs when an object touches one side of the tip. Moreover, the curvature thus caused is abrupt; the pressed part alone bending. Even slight pressure suffices, such as a bit of card cemented to one side. therefore a radicle, as it passes over the edge of any obstacle in the ground, will through the action of geotropism press against it; and this pressure will cause the radicle to endeavour to bend abruptly over the edge. It will thus recover as quickly as possible its normal downward course.
Radicles are also sensitive to air which contains more moisture on one side than the other, and they bend towards its source. It is therefore probable that they are in like manner sensitive to dampness in the soil. It was ascertained in several cases that this sensitiveness resides in the tip, which transmits an influence causing the adjoining upper part to bend in opposition to geotropism towards the moist object. We may therefore infer that roots will be deflected from their downward course towards any source of moisture in the soil.
Again, most or all radicles are slightly sensitive to light, and according to Wiesner, generally bend a little [page 552] from it. Whether this can be of any service to them is very doubtful, but with seeds germinating on the surface it will slightly aid geotropism in directing the radicles to the ground.* We ascertained in one instance that such sensitiveness resided in the tip, and caused the adjoining parts to bend from the light. The sub-a?rial roots observed by Wiesner were all apheliotropic, and this, no doubt, is of use in bringing them into contact with trunks of trees or surfaces of rock, as is their habit.
We thus see that with seedling plants the tip of the radicle is endowed with diverse kinds of sensitiveness; and that the tip directs the adjoining growing parts to bend to or from the exciting cause, according to the needs of the plant. The sides of the radicle are also sensitive to contact, but in a widely different manner. Gravitation, though a less powerful cause of movement than the other above specified stimuli, is ever present; so that it ultimately prevails and determines the downward growth of the root.
The primary radicle emits secondary ones which project sub-horizontally; and these were observed in one case to circumnutate. Their tips are also sensitive to contact, and they are thus excited to bend away from any touching object; so that they resemble in these respects, as far as they were observed, the primary radicles. If displaced they resume, as Sachs has shown, their original sub-horizontal position; and this apparently is due to diageotropism. The secondary radicles emit tertiary ones, but these, in the case of the bean, are not affected by gravitation; consequently they protrude in all directions. Thus the general
* Dr. Karl Richter, who has especially attended to this subject ('K. Akad. der Wissenschaften in Wien,' 1879, p. 149), states that apheliotropism does not aid radicles in penetrating the ground. [page 553]
arrangement of the three orders of roots is excellently adapted for searching the whole soil for nutriment.
Sachs has shown that if the tip of the primary radicle is cut off (and the tip will occasionally be gnawed off with seedlings in a state of nature) one of the secondary radicles grows perpendicularly downwards, in a manner which is analogous to the upward growth of a lateral shoot after the amputation of the leading shoot. We have seen with radicles of the bean that if the primary radicle is merely compressed instead of being cut off, so that an excess of sap is directed into the secondary radicles, their natural condition is disturbed and they grow downwards. Other analogous facts have been given. As anything which disturbs the constitution is apt to lead to reversion, that is, to the resumption of a former character, it appears probable that when secondary radicles grow downwards or lateral shoots upwards, they revert to the primary manner of growth proper to radicles and shoots.
With dicotyledonous seeds, after the protrusion of the radicle, the hypocotyl breaks through the seed-coats; but if the cotyledons are hypogean, it is the epicotyl which breaks forth. These organs are at first invariably arched, with the upper part bent back parallel to the lower; and they retain this form until they have risen above the ground. In some cases, however, it is the petioles of the cotyledons or of the first true leaves which break through the seed-coats as well as the ground, before any part of the stem protrudes; and then the petioles are almost invariably arched. We have met with only one exception, and that only a partial one, namely, with the petioles of the two first leaves of Acanthus candelabrum. With Delphinium nudicaule the petioles of the two cotyledons are com- [page 554] pletely confluent, and they break through the ground as an arch; afterwards the petioles of the successively formed early leaves are arched, and they are thus enabled to break through the base of the confluent petioles of the cotyledons. In the case of Megarrhiza, it is the plumule which breaks as an arch through the tube formed by the confluence of the cotyledon-petioles. With mature plants, the flower-stems and the leaves of some few species, and the rachis of several ferns, as they emerge separately from the ground, are likewise arched. The fact of so many different organs in plants of many kinds breaking through the ground under the form of an arch, shows that this must be in some manner highly important to them. According to Haberlandt, the tender growing apex is thus saved from abrasion, and this is probably the true explanation. But as both legs of the arch grow, their power of breaking through the ground will be much increased as long as the tip remains within the seed-coats and has a point of support. In the case of monocotyledons the plumule or cotyledon is rarely arched, as far as we have seen; but this is the case with the leaf-like cotyledon of the onion; and the crown of the arch is here strengthened by a special protuberance. In the Gramineae the summit of the straight, sheath-like cotyledon is developed into a hard sharp crest, which evidently serves for breaking through the earth. With dicotyledons the arching of the epicotyl or hypocotyl often appears as if it merely resulted from the manner in which the parts are packed within the seed; but it is doubtful whether this is the whole of the truth in any case, and it certainly was not so in several cases, in which the arching was seen to commence after the parts had wholly [page 555] escaped from the seed-coats. As the arching occurred in whatever position the seeds were placed, it is no doubt due to temporarily increased growth of the nature of epinasty or hyponasty along one side of the part.
As this habit of the hypocotyl to arch itself appears to be universal, it is probably of very ancient origin. It is therefore not surprising that it should be inherited, at least to some extent, by plants having hypogean cotyledons, in which the hypocotyl is only slightly developed and never protrudes above the ground, and in which the arching is of course now quite useless. This tendency explains, as we have seen, the curvature of the hypocotyl (and the consequent movement of the radicle) which was first observed by Sachs, and which we have often had to refer to as Sachs' curvature.
The several foregoing arched organs are continually circumnutating, or endeavouring to circumnutate, even before they break through the ground. As soon as any part of the arch protrudes from the seed-coats it is acted upon by apogeotropism, and both the legs bend upwards as quickly as the surrounding earth will permit, until the arch stands vertically. By continued growth it then forcibly breaks through the ground; but as it is continually striving to circumnutate this will aid its emergence in some slight degree, for we know that a circumnutating hypocotyl can push away damp sand on all sides. As soon as the faintest ray of light reaches a seedling, heliotropism will guide it through any crack in the soil, or through an entangled mass of overlying vegetation; for apogeotropism by itself can direct the seedling only blindly upwards. Hence probably it is that sensitiveness to light resides in the tip of the cotyledons of the Gramineae, and in [page 556] the upper part of the hypocotyls of at least some plants.
As the arch grows upwards the cotyledons are dragged out of the ground. The seed-coats are either left behind buried, or are retained for a time still enclosing the cotyledons. These are afterwards cast off merely by the swelling of the cotyledons. But with most of the Cucurbitaceae there is a curious special contrivance for bursting the seed-coats whilst beneath the ground, namely, a peg at the base of the hypocotyl, projecting at right angles, which holds down the lower half of the seed-coats, whilst the growth of the arched part of the hypocotyl lifts up the upper half, and thus splits them in twain. A somewhat analogous structure occurs in Mimosa pudica and some other plants. Before the cotyledons are fully expanded and have diverged, the hypocotyl generally straightens itself by increased growth along the concave side, thus reversing the process which caused the arching. Ultimately not a trace of the former curvature is left, except in the case of the leaf-like cotyledons of the onion.
The cotyledons can now assume the function of leaves, and decompose carbonic acid; they also yield up to other parts of the plant the nutriment which they often contain. When they contain a large stock of nutriment they generally remain buried beneath the ground, owing to the small development of the hypocotyl; and thus they have a better chance of escaping destruction by animals. From unknown causes, nutriment is sometimes stored in the hypocotyl or in the radicle, and then one of the cotyledons or both become rudimentary, of which several instances have been given. It is probable that the extraordinary manner of germination of Megarrhiza Californica, [page 557] Ipomoea leptophylla and pandurata, and of Quercus virens, is connected with the burying of the tuber-like roots, which at an early age are stocked with nutriment; for in these plants it is the petioles of the cotyledons which first protrude from the seeds, and they are then merely tipped with a minute radicle and hypocotyl. These petioles bend down geotropically like a root and penetrate the ground, so that the true root, which afterwards becomes greatly enlarged, is buried at some little depth beneath the surface. Gradations of structure are always interesting, and Asa Gray informs us that with Ipomoea Jalappa, which likewise forms huge tubers, the hypocotyl is still of considerable length, and the petioles of the cotyledons are only moderately elongated. But in addition to the advantage gained by the concealment of the nutritious matter stored within the tubers, the plumule, at least in the case of Megarrhiza, is protected from the frosts of winter by being buried.
With many dicotyledonous seedlings, as has lately been described by De Vries, the contraction of the parenchyma of the upper part of the radicle drags the hypocotyl downwards into the earth; sometimes (it is said) until even the cotyledons are buried. The hypocotyl itself of some species contracts in a like manner. It is believed that this burying process serves to protect the seedlings against the frosts of winter.
Our imaginary seedling is now mature as a seedling, for its hypocotyl is straight and its cotyledons are fully expanded. In this state the upper part of the hypocotyl and the cotyledons continue for some time to circumnutate, generally to a wide extent relatively to the size of the parts, and at a rapid rate. But seedlings profit by this power of movement only when it is modified, especially by the action of light and [page 558] gravitation; for they are thus enabled to move more rapidly and to a greater extent than can most mature plants. Seedlings are subjected to a severe struggle for life, and it appears to be highly important to them that they should adapt themselves as quickly and as perfectly as possible to their conditions. Hence also it is that they are so extremely sensitive to light and gravitation. The cotyledons of some few species are sensitive to a touch; but it is probable that this is only an indirect result of the foregoing kinds of sensitiveness, for there is no reason to believe that they profit by moving when touched.
Our seedling now throws up a stem bearing leaves, and often branches, all of which whilst young are continually circumnutating. If we look, for instance, at a great acacia tree, we may feel assured that every one of the innumerable growing shoots is constantly describing small ellipses; as is each petiole, sub-petiole, and leaflet. The latter, as well as ordinary leaves, generally move up and down in nearly the same vertical plane, so that they describe very narrow ellipses. The flower-peduncles are likewise continually circumnutating. If we could look beneath the ground, and our eyes had the power of a microscope, we should see the tip of each rootlet endeavouring to sweep small ellipses or circles, as far as the pressure of the surrounding earth permitted. All this astonishing amount of movement has been going on year after year since the time when, as a seedling, the tree first emerged from the ground.
Stems are sometimes developed into long runners or stolons. These circumnutate in a conspicuous manner, and are thus aided in passing between and over surrounding obstacles. But whether the circumnutating movement has been increased for this special purpose is doubtful. [page 559]
We have now to consider circumnutation in a modified form, as the source of several great classes of movement. The modification may be determined by innate causes, or by external agencies. Under the first head we see leaves which, when first unfolded, stand in a vertical position, and gradually bend downwards as they grow older. We see flower-peduncles bending down after the flower has withered, and others rising up; or again, stems with their tips at first bowed downwards, so as to be hooked, afterwards straightening themselves; and many other such cases. These changes of position, which are due to epinasty or hyponasty, occur at certain periods of the life of the plant, and are independent of any external agency. They are effected not by a continuous upward or downward movement, but by a succession of small ellipses, or by zigzag lines,—that is, by a circumnutating movement which is preponderant in some one direction.
Again, climbing plants whilst young circumnutate in the ordinary manner, but as soon as the stem has grown to a certain height, which is different for different species, it elongates rapidly, and now the amplitude of the circumnutating movement is immensely increased, evidently to favour the stem catching hold of a support. The stem also circumnutates rather more equally to all sides than in the case of non-climbing plants. This is conspicuously the case with............
Join or Log In! You need to log in to continue reading

Login into Your Account

  Remember me on this computer.

All The Data From The Network AND User Upload, If Infringement, Please Contact Us To Delete! Contact Us
About Us | Terms of Use | Privacy Policy | Tag List | Recent Search  
©2010-2018, All Rights Reserved