Search      Hot    Newest Novel
HOME > Short Stories > How We Think > CHAPTER SEVEN
Font Size:【Large】【Middle】【Small】 Add Bookmark  
CHAPTER SEVEN
 SYSTEMATIC INFERENCE: INDUCTION AND DEDUCTION  
§ 1. The Double Movement of Reflection
 
Back and forth between facts and meanings
The characteristic outcome of thinking we saw to be the organization of facts and conditions which, just as they stand, are isolated, fragmentary, and discrepant, the organization being effected through the introduction of connecting links, or middle terms. The facts as they stand are the data, the raw material of reflection; their lack of coherence perplexes and stimulates to reflection. There follows the suggestion of some meaning which, if it can be substantiated, will give a whole in which various fragmentary and seemingly incompatible data find their proper place. The meaning suggested supplies a mental platform, an intellectual point of view, from which to note and define the data more carefully, to seek for additional observations, and to institute, experimentally, changed conditions.
 
Inductive and deductive
There is thus a double movement in all reflection: a movement from the given partial and confused data to a suggested comprehensive (or inclusive) entire situation; and back from this suggested whole—which as suggested is a meaning, an idea—to the particular facts, so as to connect these with one another and with additional facts to which the suggestion has directed attention. Roughly speaking, the first of these movements[Pg 80] is inductive; the second deductive. A complete act of thought involves both—it involves, that is, a fruitful interaction of observed (or recollected) particular considerations and of inclusive and far-reaching (general) meanings.
 
Hurry versus caution
This double movement to and from a meaning may occur, however, in a casual, uncritical way, or in a cautious and regulated manner. To think means, in any case, to bridge a gap in experience, to bind together facts or deeds otherwise isolated. But we may make only a hurried jump from one consideration to another, allowing our aversion to mental disquietude to override the gaps; or, we may insist upon noting the road traveled in making connections. We may, in short, accept readily any suggestion that seems plausible; or we may hunt out additional factors, new difficulties, to see whether the suggested conclusion really ends the matter. The latter method involves definite formulation of the connecting links; the statement of a principle, or, in logical phrase, the use of a universal. If we thus formulate the whole situation, the original data are transformed into premises of reasoning; the final belief is a logical or rational conclusion, not a mere de facto termination.
 
Continuity of relationship the mark of the latter
The importance of connections binding isolated items into a coherent single whole is embodied in all the phrases that denote the relation of premises and conclusions to each other. (1) The premises are called grounds, foundations, bases, and are said to underlie, uphold, support the conclusion. (2) We "descend" from the premises to the conclusion, and "ascend" or "mount" in the opposite direction—as a river may be continuously traced from source to sea or vice versa. So the conclusion springs, flows, or is drawn from its premises.[Pg 81] (3) The conclusion—as the word itself implies—closes, shuts in, locks up together the various factors stated in the premises. We say that the premises "contain" the conclusion, and that the conclusion "contains" the premises, thereby marking our sense of the inclusive and comprehensive unity in which the elements of reasoning are bound tightly together.[15] Systematic inference, in short, means the recognition of definite relations of interdependence between considerations previously unorganized and disconnected, this recognition being brought about by the discovery and insertion of new facts and properties.
 
Scientific induction and deduction
This more systematic thinking is, however, like the cruder forms in its double movement, the movement toward the suggestion or hypothesis and the movement back to facts. The difference is in the greater conscious care with which each phase of the process is performed. The conditions under which suggestions are allowed to spring up and develop are regulated. Hasty acceptance of any idea that is plausible, that seems to solve the difficulty, is changed into a conditional acceptance pending further inquiry. The idea is accepted as a working hypothesis, as something to guide investigation and bring to light new facts, not as a final conclusion. When pains are taken to make each aspect of the movement as accurate as possible, the movement toward building up the idea is known as inductive discovery (induction, for short); the movement toward developing, applying, and testing, as deductive proof (deduction, for short).
 
Particular and universal
While induction moves from fragmentary details (or[Pg 82] particulars) to a connected view of a situation (universal), deduction begins with the latter and works back again to particulars, connecting them and binding them together. The inductive movement is toward discovery of a binding principle; the deductive toward its testing—confirming, refuting, modifying it on the basis of its capacity to interpret isolated details into a unified experience. So far as we conduct each of these processes in the light of the other, we get valid discovery or verified critical thinking.
 
Illustration from everyday experience
A commonplace illustration may enforce the points of this formula. A man who has left his rooms in order finds them upon his return in a state of confusion, articles being scattered at random. Automatically, the notion comes to his mind that burglary would account for the disorder. He has not seen the burglars; their presence is not a fact of observation, but is a thought, an idea. Moreover, the man has no special burglars in mind; it is the relation, the meaning of burglary—something general—that comes to mind. The state of his room is perceived and is particular, definite,—exactly as it is; burglars are inferred, and have a general status. The state of the room is a fact, certain and speaking for itself; the presence of burglars is a possible meaning which may explain the facts.
 
of induction,
So far there is an inductive tendency, suggested by particular and present facts. In the same inductive way, it occurs to him that his children are mischievous, and that they may have thrown the things about. This rival hypothesis (or conditional principle of explanation) prevents him from dogmatically accepting the first suggestion. Judgment is held in suspense and a positive conclusion postponed.[Pg 83]
 
of deduction
Then deductive movement begins. Further observations, recollections, reasonings are conducted on the basis of a development of the ideas suggested: if burglars were responsible, such and such things would have happened; articles of value would be missing. Here the man is going from a general principle or relation to special features that accompany it, to particulars,—not back, however, merely to the original particulars (which would be fruitless or take him in a circle), but to new details, the actual discovery or nondiscovery of which will test the principle. The man turns to a box of valuables; some things are gone; some, however, are still there. Perhaps he has himself removed the missing articles, but has forgotten it. His experiment is not a decisive test. He thinks of the silver in the sideboard—the children would not have taken that nor would he absent-mindedly have changed its place. He looks; all the solid ware is gone. The conception of burglars is confirmed; examination of windows and doors shows that they have been tampered with. Belief culminates; the original isolated facts have been woven into a coherent fabric. The idea first suggested (inductively) has been employed to reason out hypothetically certain additional particulars not yet experienced, that ought to be there, if the suggestion is correct. Then new acts of observation have shown that the particulars theoretically called for are present, and by this process the hypothesis is strengthened, corroborated. This moving back and forth between the observed facts and the conditional idea is kept up till a coherent experience of an object is substituted for the experience of conflicting details—or else the whole matter is given up as a bad job.
 
Science is the same operations carefully performed
Sciences exemplify similar attitudes and operations,[Pg 84] but with a higher degree of elaboration of the instruments of caution, exactness and thoroughness. This greater elaboration brings about specialization, an accurate marking off of various types of problems from one another, and a corresponding segregation and classification of the materials of experience associated with each type of problem. We shall devote the remainder of this chapter to a consideration of the devices by which the discovery, the development, and the testing of meanings are scientifically carried on.
 
§ 2. Guidance of the Inductive Movement
 
Guidance is indirect
Control of the formation of suggestion is necessarily indirect, not direct; imperfect, not perfect. Just because all discovery, all apprehension involving thought of the new, goes from the known, the present, to the unknown and absent, no rules can be stated that will guarantee correct inference. Just what is suggested to a person in a given situation depends upon his native constitution (his originality, his genius), temperament, the prevalent direction of his interests, his early environment, the general tenor of his past experiences, his special training, the things that have recently occupied him continuously or vividly, and so on; to some extent even upon an accidental conjunction of present circumstances. These matters, so far as they lie in the past or in external conditions, clearly escape regulation. A suggestion simply does or does not occur; this or that suggestion just happens, occurs, springs up. If, however, prior experience and training have developed an attitude of patience in a condition of doubt, a capacity for suspended judgment, and a liking for inquiry, indirect control of the course of suggestions is possible.[Pg 85] The individual may return upon, revise, restate, enlarge, and analyze the facts out of which suggestion springs. Inductive methods, in the technical sense, all have to do with regulating the conditions under which observation, memory, and the acceptance of the testimony of others (the operations supplying the raw data) proceed.
 
Method of indirect regulation
Given the facts A B C D on one side and certain individual habits on the other, suggestion occurs automatically. But if the facts A B C D are carefully looked into and thereby resolved into the facts A′ B′′ R S, a suggestion will automatically present itself different from that called up by the facts in their first form. To inventory the facts, to describe exactly and minutely their respective traits, to magnify artificially those that are obscure and feeble, to reduce artificially those that are so conspicuous and glaring as to be distracting,—these are ways of modifying the facts that exercise suggestive force, and thereby indirectly guiding the formation of suggested inferences.
 
Illustration from diagnosis
Consider, for example, how a physician makes his diagnosis—his inductive interpretation. If he is scientifically trained, he suspends—postpones—reaching a conclusion in order that he may not be led by superficial occurrences into a snap judgment. Certain conspicuous phenomena may forcibly suggest typhoid, but he avoids a conclusion, or even any strong preference for this or that conclusion until he has greatly (i) enlarged the scope of his data, and (ii) rendered them more minute. He not only questions the patient as to his feelings and as to his acts prior to the disease, but by various manipulations with his hands (and with instruments made for the purpose) brings to light a large number of facts of which the patient is quite unaware. The state of tem[Pg 86]perature, respiration, and heart-action is accurately noted, and their fluctuations from time to time are exactly recorded. Until this examination has worked out toward a wider collection and in toward a minuter scrutiny of details, inference is deferred.
 
Summary: definition of scientific induction
Scientific induction means, in short, all the processes by which the observing and amassing of data are regulated with a view to facilitating the formation of explanatory conceptions and theories. These devices are all directed toward selecting the precise facts to which weight and significance shall attach in forming suggestions or ideas. Specifically, this selective determination involves devices of (1) elimination by analysis of what is likely to be misleading and irrelevant, (2) emphasis of the important by collection and comparison of cases, (3) deliberate construction of data by experimental variation.
 
Elimination of irrelevant meanings
(1) It is a common saying that one must learn to discriminate between observed facts and judgments based upon them. Taken literally, such advice cannot be carried out; in every observed thing there is—if the thing have any meaning at all—some consolidation of meaning with what is sensibly and physically present, such that, if this were entirely excluded, what is left would have no sense. A says: "I saw my brother." The term brother, however, involves a relation that cannot be sensibly or physically observed; it is inferential in status. If A contents himself with saying, "I saw a man," the factor of classification, of intellectual reference, is less complex, but still exists. If, as a last resort, A were to say, "Anyway, I saw a colored object," some relationship, though more rudimentary and undefined, still subsists. Theoretically, it is possible that no[Pg 87] object was there, only an unusual mode of nerve stimulation. None the less, the advice to discriminate what is observed from what is inferred is sound practical advice. Its working import is that one should eliminate or exclude those inferences as to which experience has shown that there is greatest liability to error. This, of course, is a relative matter. Under ordinary circumstances no reasonable doubt would attach to the observation, "I see my brother"; it would be pedantic and silly to resolve this recognition back into a more elementary form. Under other circumstances it might be a perfectly genuine question as to whether A saw even a colored thing, or whether the color was due to a stimulation of the sensory optical apparatus (like "seeing stars" upon a blow) or to a disordered circulation. In general, the scientific man is one who knows that he is likely to be hurried to a conclusion, and that part of this precipitancy is due to certain habits which tend to make him "read" certain meanings into the situation that confronts him, so that he must be on the lookout against errors arising from his interests, habits, and current preconceptions.
 
The technique of conclusion
The technique of scientific inquiry thus consists in various processes that tend to exclude over-hasty "reading in" of meanings; devices that aim to give a purely "objective" unbiased rendering of the data to be interpreted. Flushed cheeks usually mean heightened temperature; paleness means lowered temperature. The clinical thermometer records automatically the actual temperature and hence checks up the habitual associations that might lead to error in a given case. All the instrumentalities of observation—the various -meters and -graphs and -scopes—fill a part[Pg 88] of their scientific r?le in helping to eliminate meanings supplied because of habit, prejudice, the strong momentary preoccupation of excitement and anticipation, and by the vogue of existing theories. Photographs, phonographs, kymographs, actinographs, seismographs, plethysmographs, and the like, moreover, give records that are permanent, so that they can be employed by different persons, and by the same person in different states of mind, i.e. under the influence of varying expectations and dominant beliefs. Thus purely personal prepossessions (due to habit, to desire, to after-effects of recent experience) may be largely eliminated. In ordinary language, the facts are objectively, rather than subjectively, determined. In this way tendencies to premature interpretation are held in check.
 
Collection of instances
(2) Another important method of control consists in the multiplication of cases or instances. If I doubt whether a certain handful gives a fair sample, or representative, for purposes of judging value, of a whole carload of grain, I take a number of handfuls from various parts of the car and compare them. If they agree in quality, well and good; if they disagree, we try to get enough samples so that when they are thoroughly mixed the result will be a fair basis for an evaluation. This illustration represents roughly the value of that aspect of scientific control in induction which insists upon multiplying observations instead of basing the conclusion upon one or a few cases.
 
This method not the whole of induction
So prominent, indeed, is this aspect of inductive method that it is frequently treated as the whole of induction. It is supposed that all inductive inference is based upon collecting and comparing a number of like cases. But in fact such comparison and collection is a[Pg 89] secondary development within the process of securing a correct conclusion in some single case. If a man infers from a single sample of grain as to the grade of wheat of the car as a whole, it is induction and, under certain circumstances, a sound induction; other cases are resorted to simply for the sake of rendering that induction more guarded, and more probably correct. In like fashion, the reasoning that led up to the burglary idea in the instance already cited (p. 83) was inductive, though there was but one single case examined. The particulars upon which the general meaning (or relation) of burglary was grounded were simply the sum total of the unlike items and qualities that made up the one case examined. Had this case presented very great obscurities and difficulties, recourse might then have been had to examination of a number of similar cases. But this comparison would not make inductive a process which was not previously of that character; it would only render induction more wary and adequate. The object of bringing into consideration a multitude of cases is to facilitate the selection of the evidential or significant features upon which to base inference in some single case.
 
Contrast as important as likeness
Accordingly, points of unlikeness are as important as points of likeness among the cases examined. Comparison, without contrast, does not amount to anyt............
Join or Log In! You need to log in to continue reading
   
 

Login into Your Account

Email: 
Password: 
  Remember me on this computer.

All The Data From The Network AND User Upload, If Infringement, Please Contact Us To Delete! Contact Us
About Us | Terms of Use | Privacy Policy | Tag List | Recent Search  
©2010-2018 wenovel.com, All Rights Reserved