Search      Hot    Newest Novel
HOME > Classical Novels > The Life of Sir Isaac Newton > CHAPTER XI.
Font Size:【Large】【Middle】【Small】 Add Bookmark  
CHAPTER XI.
 The first Idea of Gravity occurs to Newton in 1666—His first Speculations upon it—Interrupted by his Optical Experiments—He resumes the Subject in consequence of a Discussion with Dr. Hooke—He discovers the true Law of Gravity and the Cause of the Planetary Motions—Dr. Halley urges him to publish his Principia—His Principles of Natural Philosophy—Proceedings of the Royal Society on this Subject—The Principia appears in 1687—General Account of it, and of the Discoveries it contains—They meet with great Opposition, owing to the Prevalence of the Cartesian System—Account of the Reception and Progress of the Newtonian Philosophy in foreign Countries—Account of its Progress and Establishment in England.

Such is a brief sketch of the labours and lives of those illustrious men who prepared the science of astronomy for the application of Newton’s genius. Copernicus had determined the arrangement and general movements of the planetary bodies: Kepler had proved that they moved in elliptical orbits; that their radii vectores described arcs proportional to the times; and that their periodic times were related to their distances. Galileo had added to the universe a whole system of secondary planets; and several astronomers had distinctly referred the motion of the heavenly bodies to the power of attraction.

In the year 1666, when the plague had driven Newton from Cambridge, he was sitting alone in the garden at Woolsthorpe, and reflecting on the nature of gravity,—that remarkable power which causes all bodies to descend towards the centre of the earth. As this power is not found to suffer any sensible diminution at the greatest distance from the earth’s centre to which we can reach, being as powerful at the tops of the highest mountains as at the bottom of the deepest mines, he conceived it highly probable, that it must extend much farther than was usually supposed. No sooner had this141 happy conjecture occurred to his mind, than he considered what would be the effect of its extending as far as the moon. That her motion must be influenced by such a power he did not for a moment doubt; and a little reflection convinced him that it might be sufficient for retaining that luminary in her orbit round the earth. Though the force of gravity suffers no sensible diminution at those small distances from the earth’s centre at which we can place ourselves, yet he thought it very possible, that, at the distance of the moon, it might differ much in strength from what it is on the earth. In order to form some estimate of the degree of its diminution, he considered that, if the moon be retained in her orbit by the force of gravity, the primary planets must also be carried round the sun by the same power; and by comparing the periods of the different planets with their distances from the sun, he found, that if they were retained in their orbits by any power like gravity, its force must decrease in the duplicate proportion,41 or as the squares of their distances from the sun. In drawing this conclusion, he supposed the planets to move in orbits perfectly circular, and having the sun in their centre. Having thus obtained the law of the force by which the planets were drawn to the sun, his next object was to ascertain if such a force, emanating from the earth and directed to the moon, was sufficient, when diminished in the duplicate ratio of the distance, to retain her in her orbit. In performing this calculation, it was necessary to compare the space through which heavy bodies fall in a second at a given distance from the centre of the earth, viz. at its surface, with the space through which the moon, as it were, falls to the earth in a second of time while revolving in a circular orbit. Being at142 a distance from books when he made this computation, he adopted the common estimate of the earth’s diameter then in use among geographers and navigators, and supposed that each degree of latitude contained sixty English miles. In this way he found that the force which retains the moon in her orbit, as deduced from the force which occasions the fall of heavy bodies to the earth’s surface, was one-sixth greater than that which is actually observed in her circular orbit. This difference threw a doubt upon all his speculations; but, unwilling to abandon what seemed to be otherwise so plausible, he endeavoured to account for the difference of the two forces, by supposing that some other cause42 must have been united with the force of gravity in producing so great a velocity of the moon in her circular orbit. As this new cause, however, was beyond the reach of observation, he discontinued all further inquiries into the subject, and concealed from his friends the speculations in which he had been employed.

After his return to Cambridge in 1666, his attention was occupied with those optical discoveries of which we have given an account in a preceding chapter; but he had no sooner brought them to a close than his mind reverted to the great subject of the planetary motions. Upon the death of Oldenburg in August, 1678, Dr. Hooke was appointed secretary to the Royal Society; and as this learned body had requested the opinion of Newton about a system of physical astronomy, he addressed a letter to Dr. Hooke on the 28th November, 1679. In this letter he proposed a direct experiment for verifying the motion of the earth, viz. by observing whether or not bodies that fall from a considerable height descend in a vertical direction, for if the earth were at rest the body would describe exactly a vertical143 line, whereas if it revolved round its axis, the falling body must deviate from the vertical line towards the east. The Royal Society attached great value to the idea thus casually suggested; and Dr. Hooke was appointed to put it to the test of experiment. Being thus led to consider the subject more attentively, he wrote to Newton, that wherever the direction of gravity was oblique to the axis on which the earth revolved, that is, in every part of the earth except the equator, falling bodies should approach to the equator, and the deviation from the vertical, in place of being exactly to the east, as Newton maintained, should be to the south-east of the point from which the body began to move. Newton acknowledged that this conclusion was correct in theory, and Dr. Hooke is said to have given an experimental demonstration of it before the Royal Society in December, 1679.43 Newton had erroneously concluded that the path of the falling body would be a spiral; but Dr. Hooke, on the same occasion on which he made the preceding experiment, read a paper to the Society, in which he proved that the path of the body would be an eccentric ellipse in vacuo, and an ellipti-spiral, if the body moved in a resisting medium.44

This correction of Newton’s error, and the discovery that a projectile would move in an elliptical orbit when under the influence of a force varying in the inverse ratio of the square of the distance, led Newton, as he himself informs us in his letter to Halley,45 to discover “the theorem by which he afterward examined the ellipsis,” and to demonstrate the celebrated proposition, that a planet acted upon by an attractive force varying inversely as the squares of the distances will describe an elliptical orbit, in one of whose foci the attractive force resides.

144 But though Newton had thus discovered the true cause of all the celestial motions, he did not yet possess any evidence that such a force actually resided in the sun and planets. The failure of his former attempt to identify the law of falling bodies at the earth’s surface with that which guided the moon in her orbit threw a doubt over all his speculations, and prevented him from giving any account of them to the public.

An accident, however, of a very interesting nature induced him to resume his former inquiries, and enabled him to bring them to a close. In June, 1682, when he was attending a meeting of the Royal Society of London, the measurement of a degree of the meridian, executed by M. Picard in 1679, became the subject of conversation. Newton took a memorandum of the result obtained by the French astronomer, and having deduced from it the diameter of the earth, he immediately resumed his calculation of 1665, and began to repeat it with these new data. In the progress of the calculation he saw that the result which he had formerly expected was likely to be produced, and he was thrown into such a state of nervous irritability that he was unable to carry on the calculation. In this state of mind he intrusted it to one of his friends, and he had the high satisfaction of finding his former views amply realized. The force of gravity which regulated the fall of bodies at the earth’s surface, when diminished as the square of the moon’s distance from the earth, was found to be almost exactly equal to the centrifugal force of the moon as deduced from her observed distance and velocity.

The influence of such a result upon such a mind may be more easily conceived than described. The whole material universe was spread out before him;—the sun with all his attending planets;—the planets with all their satellites;—the comets wheeling in every direction in their eccentric orbits;—and the145 systems of the fixed stars stretching to the remotest limits of space. All the varied and complicated movements of the heavens, in short, must have been at once presented to his mind, as the necessary result of that law which he had established in reference to the earth and the moon.

After extending this law to the other bodies of the system, he composed a series of propositions on the motion of the primary planets about the sun, which were sent to London about the end of 1683, and were soon afterward communicated to the Royal Society.46

About this period other philosophers had been occupied with the same subject. Sir Christopher Wren had many years before endeavoured to explain the planetary motions “by the composition of a descent towards the sun, and an impressed motion; but he at length gave it over, not finding the means of doing it.” In January, 1683–4, Dr. Halley had concluded, from Kepler’s Law of the Periods and Distances, that the centripetal force decreased in the reciprocal proportion of the squares of the distances, and having one day met Sir Christopher Wren and Dr. Hooke, the latter affirmed that he had demonstrated upon that principle all the laws of the celestial motions. Dr. Halley confessed that his attempts were unsuccessful, and Sir Christopher, in order to encourage the inquiry, offered to present a book of forty shillings’ value to either of the two philosophers who should, in the space of two months, bring him a convincing demonstration of it. Hooke persisted in the declaration that he possessed the method, but avowed it to be his intention to conceal it for some time. He promised, however, to show it to Sir Christopher; but there is every reason to believe that this promise was never fulfilled.

In August, 1684, Dr. Halley went to Cambridge146 for the express purpose of consulting Newton on this interesting subject. Newton assured him that he had brought this demonstration to perfection, and promised him a copy of it. This copy was received in November by the doctor, who made a second visit to Cambridge, in order to induce its author to have it inserted in the register book of the society. On the 10th of December, Dr. Halley announced to the society, that he had seen at Cambridge Mr. Newton’s treatise De Motu Corporum, which he had promised to send to the society to be entered upon their register; and Dr. Halley was desired to unite with Mr. Paget, master of the mathematical school in Christ’s Hospital, in reminding Mr. Newton of his promise “for securing the invention to himself till such time as he can be at leisure to publish it.” On the 25th February Mr. Aston, the secretary, communicated a letter from Mr. Newton, in which he expressed his willingness “to enter in the register his notions about motion, and his intentions to fit them suddenly for the press.” The progress of his work was, however, interrupted by a visit of five or six weeks which he made in Lincolnshire; but he proceeded with such diligence on his return, that he was able to transmit the manuscript to London before the end of April. This manuscript, entitled Philosophi? Naturalis Principia Mathematica, and dedicated to the society, was presented by Dr. Vincent on the 28th April, 1686, when Sir John Hoskins, the vice-president, and the particular friend of Dr. Hooke, was in the chair. Dr. Vincent passed a just encomium on the novelty and dignity of the subject; and another member added, that “Mr. Newton had carried the thing so far, that there was no more to be added.” To these remarks the vice-president replied, that the method “was so much the more to be prized as it was both invented and perfected at the same time.” Dr. Hooke took offence at these remarks, and blamed Sir John for147 not having mentioned “what he had discovered to him;” but the vice-president did not seem to recollect any such communication, and the consequence of this discussion was, that “these two, who till then were the most inseparable cronies, have since scarcely seen one another, and are utterly fallen out.” After the breaking up of the meeting, the society adjourned to the coffee-house, where Dr. Hooke stated that he not only had made the same discovery, but had given the first hint of it to Newton.

An account of these proceedings was communicated to Newton through two different channels. In a letter dated May 22d, Dr. Halley wrote to him “that Mr. Hooke has some pretensions upon the invention of the rule of the decrease of gravity being reciprocally as the squares of the distances from the centre. He says you had the notion from him, though he owns the demonstration of the curves generated thereby to be wholly your own. How much of this is so you know best, as likewise what you have to do in this matter. Only Mr. Hooke seems to expect you would make some mention of him in the preface, which it is possible you may see reason to prefix.”

This communication from Dr. Halley induced our author, on the 20th June, to address a long letter to him, in which he gives a minute and able refutation of Hooke’s claims; but before this letter was despatched, another correspondent, who had received his information from one of the members that were present, informed Newton “that Hooke made a great stir, pretending that he had all from him, and desiring they would see that he had justice done him.” This fresh charge seems to have ruffled the tranquillity of Newton; and he accordingly added an angry and satirical postscript, in which he treats Hooke with little ceremony, and goes so far as to conjecture that Hooke might have acquired his knowledge of the law from a letter of his own148 to Huygens, directed to Oldenburg, and dated January 14th, 1672–3. “My letter to Hugenius was directed to Mr. Oldenburg, who used to keep the originals. His papers came into Mr. Hooke’s possession. Mr. Hooke, knowing my hand, might have the curiosity to look into that letter, and there take the notion of comparing the forces of the planets arising from their circular motion; and so what he wrote to me afterward about the rate of gravity might be nothing but the fruit of my own garden.”

In replying to this letter, Dr. Halley assured him that Hooke’s “manner of claiming the discovery had been represented to him in worse colours than it ought, and that he neither made public application to the society for justice, nor pretended that you had all from him.” The effect of this assurance was to make Newton regret that he had written the angry postscript to his letter; and in replying to Halley on the 14th July, 1686, he not only expresses his regret, but recounts the different new ideas which he had acquired from Hooke’s correspondence, and suggests it as the best method “of compromising the present dispute,” to add a scholium, in which Wren, Hooke, and Halley are acknowledged to have independently deduced the law of gravity from the second law of Kepler.47

At the meeting of the 28th April, at which the manuscript of the Principia was presented to the Royal Society, it was agreed that the printing of it should be referred to the council; that a letter of thanks should be written to its author; and at a meeting of the council on the 19th May, it was resolved that the MSS. should be printed at the society’s expense, and that Dr. Halley should superintend it while going through the press. These resolutions were communicated by Dr. Halley in a letter dated the 22d May; and in Newton’s reply on the 20th June already mentioned, he makes the following149 observations: “The proof you sent me I like very well. I designed the whole to consist of three books; the second was finished last summer, being short, and only wants transcribing, and drawing the cuts fairly. Some new propositions I have since thought on, which I can as well let alone. The third wants the theory of comets. In autumn last I spent two months in calculation to no purpose for want of a good method, which made me afterward return to the first book, and enlarge it with diverse propositions, some relating to comets, others to other things found out last winter. The third I now design to suppress. Philosophy is such an impertinently litigious lady, that a man had as good be engaged in lawsuits as have to do with her. I found it so formerly, and now I can no sooner come near her again but she gives me warning. The first two books without the third will not so well bear the title of Philosophi? Naturalis Principia Mathematica; and therefore I had altered it to this, De Motu Corporum Libri duo. But after second thoughts I retain the former title. It will help the sale of the book, which I ought not to diminish now ’tis yours.”

In replying to this letter on the 29th June, Dr. Halley regrets that our author’s tranquillity should have been thus disturbed by envious rivals; and implores him in the name of the society not to suppress the third book. “I must again beg you,” says he, “not to let your resentments run so high as to deprive us of your third book, wherein your applications of your mathematical doctrine to the theory of comets, and several curious experiments, which, as I guess by what you write ought to compose it, will undoubtedly render it acceptable to those who will call themselves philosophers without mathematics, which are much the greater number.”

To these solicitations Newton seems to have readily yielded. His second book was sent to the society, and presented on the 2d March, 1686–7.150 The third book was also transmitted, and presented on the 6th April, and the whole work was completed and published in the month of May, 1687.

Such is a brief account of the publication of a work which is memorable, not only in the annals of one science or of one country, but which will form an epoch in the history of the world, and will ever be regarded as the brightest page in the records of human reason. We shall endeavour to convey to the reader some idea of its contents, and of the brilliant discoveries which it disseminated over Europe.

The Principia consists of three books. The first and second, which occupy three-fourths of the work, are entitled, On the Motion of Bodies; and the third bears the title, On the System of the World. The first two books contain the mathematical principles of philosophy, namely, the laws and conditions of motions and forces; and they are illustrated with several philosophical scholia, which treat of some of the most general and best established points in philosophy, such as the density and resistance of bodies, spaces void of matter, and the motion of sound and light. The object of the third book is to deduce from these principles the constitution of the system of the world; and this book has been drawn up in as popular a style as possible, in order that it may be generally read.

The great discovery which characterizes the Principia is that of the principle of universal gravitation, as deduced from the motion of the moon, and from the three great facts or laws discovered by Kepler. This principle is, that every particle of matter is attracted by, or gravitates to, every other particle of matter, with a force inversely proportional to the squares of their distances. From the first law of Kepler, namely, the proportionality of the areas to the times of their description, Newton inferred that the force which kept the planet in its orbit was always directed to the sun; and from the second151 law of Kepler, that every planet moves in an ellipse with the sun in one of its foci, he drew the still more general inference, that the force by which the planet moves round that focus varies inversely as the square of its distance from the focus. As this law was true in the motion of satellites round their primary planets, Newton deduced the equality of gravity in all the heavenly bodies towards the sun, upon the supposition that they are equally distant from its centre; and in the case of terrestrial bodies, he succeeded in verifying this truth by numerous and accurate experiments.

By taking a more general view of the subject, Newton demonstrated that a conic section was the only curve in which a body could move when acted upon by a force varying inversely as the square of the distance; and he established the conditions depending on the velocity and the primitive position of the body, which were requisite to make it describe a circular, an elliptical, a parabolic, or a hyperbolic orbit.

Notwithstanding the generality and importance of these results, it still remained to be determined whether the force resided in the centres of the planets, or belonged to each individual particle of which they were composed. Newton removed this uncertainty by demonstrating, that if a spherical body acts upon a distant body with a force varying as the distance of this body from the centre of the sphere, the same effect will be produced as if each of its particles acted upon the distant body according to the same law. And hence it follows that the spheres, whether they are of uniform density, or consist of concentric layers, with densities varying according to any law whatever, will act upon each other in the same manner as if their force resided in their centres alone. But as the bodies of the solar system are very nearly spherical, they will all act upon one another, and upon bodies placed on152 their surface, as if they were so many centres of attraction; and therefore we obtain the law of gravity which subsists between spherical bodies, namely, that one sphere will act upon another with a force directly proportional to the quantity of matter, and inversely as the square of the distance between the centres of the spheres. From the equality of action and reaction, to which no exception can be found, Newton concluded that the sun gravitated to the planets, and the planets to their satellites; and the earth itself to the stone which falls upon its surface; and, consequently, that the two mutually gravitating bodies approached to one another with velocities inversely proportional to their quantities of matter.

Having established this universal law, Newton was enabled, not only to determine the weight which the same body would have at the surface of the sun and the planets, but even to calculate the quantity of matter in the sun, and in all the planets that had satellites, and even to determine the density or specific gravity of the matter of which they were composed. In this way he found that the weight of the same body would be twenty-three times greater at the surface of the sun than at the surface of the earth, and that the density of the earth was four times greater than that of the sun, the planets increasing in density as they receded from the centre of the system.

If the peculiar genius of Newton has been displayed in his investigation of the law of universal gravitation, it shines with no less lustre in the patience and sagacity with which he traced the consequences of this fertile principle.

The discovery of the spheroidal form of Jupiter by Cassini had probably directed the attention of Newton to the determination of its cause, and consequently to the investigation of the true figure of the earth. The spherical form of the planets have been ascribed by Copernicus to the gravity or natural153 appetency of their parts; but upon considering the earth as a body revolving upon its axis, Newton quickly saw that the figure arising from the mutual attraction of its parts must be modified by another force arising from its rotation. When a body revolves upon an axis, the velocity of rotation increases from the poles, where it is nothing, to the equator, where it is a maximum. In consequence of this velocity the bodies on the earth’s surface have a tendency to fly off from it, and this tendency increases with the velocity. Hence arises a centrifugal force which acts in combination with a force of gravity, and which Newton found to be the 289th part of the force of gravity at the equator, and decreasing, as the cosine of the latitude, from the equator to the poles. The great predominance of gravity over the centrifugal force prevents the latter from carrying off any bodies from the earth’s surface, but the weight of all bodies is diminished by the centrifugal force, so that the weight of any body is greater at the poles than it is at the equator. If we now suppose the waters at the pole to communicate with those at the equator by means of a canal, one branch of which goes from the pole to the centre of the earth, and the other from the centre of the earth to the equator, then the polar branch of the canal will be heavier than the equatorial branch, in consequence of its weight not being diminished by the centrifugal force, and, therefore, in order that the two columns may be in equilibrio, the equatorial one must be lengthened. Newton found that the length of the polar must be to that of the equatorial canal as 229 to 230, or that the earth’s polar radius must be seventeen miles less than its equatorial radius; that is, that the figure of the earth is an oblate spheroid, formed by the revolution of an ellipse round its lesser axis. Hence it follows, that the intensity of gravity at any point of the earth’s surface is in the inverse ratio of the distance of that154 point from the centre, and, consequently, that it diminishes from the equator to the poles,&............
Join or Log In! You need to log in to continue reading
   
 

Login into Your Account

Email: 
Password: 
  Remember me on this computer.

All The Data From The Network AND User Upload, If Infringement, Please Contact Us To Delete! Contact Us
About Us | Terms of Use | Privacy Policy | Tag List | Recent Search  
©2010-2018 wenovel.com, All Rights Reserved